Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 75
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Oecologia ; 202(3): 549-559, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37454309

RESUMO

Nutrient resorption is a fundamental physiological process in plants, with important ecological controls over numerous ecosystem functions. However, the role of community assembly in driving responses of nutrient resorption to perturbation remains largely unknown. Following the Price equation framework and the Community Assembly and Ecosystem Function framework, we quantified the contribution of species loss, species gain, and shared species to the reduction of community-level nutrient resorption efficiency in response to multi-level nitrogen (N) addition in a temperate steppe, after continuous N addition for seven years. Reductions of both N and phosphorus (P) resorption efficiency (NRE and PRE, respectively) were positively correlated with N addition levels. The dissimilarities in species composition between N-enriched and control communities increased with N addition levels, and N-enriched plots showed substantial species losses and gains. Interestingly, the reduction of community-scale NRE and PRE mostly resulted from N-induced decreases in resorption efficiency for the shared species in the control and N-enriched communities. There were negative correlations between the contributions of species richness effect and species identity effect and between the number and identity of species gained for the changes in both NRE and PRE following N enrichment. By simultaneously considering N-induced changes in species composition and in species-level resorption, our work presents a more complete picture of how different community assembly processes contribute to N-induced changes in community-level resorption.


Assuntos
Ecossistema , Nitrogênio , Nitrogênio/análise , Plantas , Fósforo , Nutrientes , Solo , Folhas de Planta/química
2.
Glob Chang Biol ; 29(16): 4586-4594, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37265328

RESUMO

Identifying the thresholds for the positive responses of total net primary productivity (NPP) to nitrogen (N) enrichment is an essential prerequisite for predicting the benefits of N deposition on ecosystem carbon sequestration. However, the responses of below-ground NPP (BNPP) to N enrichment are unknown in many ecosystems, which limits our ability to understand the carbon cycling under the scenario of increasing N availability. We examined the changes in above-ground NPP (ANPP), BNPP, and NPP of a temperate meadow steppe across a wide-ranging N addition gradient (0, 2, 5, 10, 20, and 50 g N m-2 year-1 ) during 5 years. Both ANPP and NPP increased nonlinearly with N addition rates. The N saturation threshold for ANPP (TA ) and NPP (TN ) was at the rate of 13.11 and 6.70 g N m-2 year-1 , respectively. BNPP decreased with increasing N addition when N addition rates ˃5 g N m-2 year-1 , resulting in much lower TN than TA . Soil N enrichment played a key role in driving the negative impacts of high N addition rates on BNPP, and consequently on the earlier occurrence of N saturation threshold for NPP. Our results highlight the negative effects of soil N enrichment on NPP in natural grasslands super-saturated with N. Furthermore, by considering ANPP and BNPP simultaneously, our results indicate that previous findings from above-ground might have over-estimated the positive effects of N deposition on primary productivity.


Assuntos
Ecossistema , Pradaria , Nitrogênio , Ciclo do Carbono , Solo
3.
mBio ; 14(4): e0106023, 2023 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-37338298

RESUMO

Coronaviruses (CoVs) encode nonstructural proteins 1-16 (nsps 1-16) which form replicase complexes that mediate viral RNA synthesis. Remdesivir (RDV) is an adenosine nucleoside analog antiviral that inhibits CoV RNA synthesis. RDV resistance mutations have been reported only in the nonstructural protein 12 RNA-dependent RNA polymerase (nsp12-RdRp). We here show that a substitution mutation in the nsp13-helicase (nsp13-HEL A335V) of the betacoronavirus murine hepatitis virus (MHV) that was selected during passage with the RDV parent compound confers partial RDV resistance independently and additively when expressed with co-selected RDV resistance mutations in the nsp12-RdRp. The MHV A335V substitution did not enhance replication or competitive fitness compared to WT MHV and remained sensitive to the active form of the cytidine nucleoside analog antiviral molnupiravir (MOV). Biochemical analysis of the SARS-CoV-2 helicase encoding the homologous substitution (A336V) demonstrates that the mutant protein retained the ability to associate with the core replication proteins nsps 7, 8, and 12 but had impaired helicase unwinding and ATPase activity. Together, these data identify a novel determinant of nsp13-HEL enzymatic activity, define a new genetic pathway for RDV resistance, and demonstrate the importance of surveillance for and testing of helicase mutations that arise in SARS-CoV-2 genomes. IMPORTANCE Despite the development of effective vaccines against COVID-19, the continued circulation and emergence of new variants support the need for antivirals such as RDV. Understanding pathways of antiviral resistance is essential for surveillance of emerging variants, development of combination therapies, and for identifying potential new targets for viral inhibition. We here show a novel RDV resistance mutation in the CoV helicase also impairs helicase functions, supporting the importance of studying the individual and cooperative functions of the replicase nonstructural proteins 7-16 during CoV RNA synthesis. The homologous nsp13-HEL mutation (A336V) has been reported in the GISAID database of SARS-CoV-2 genomes, highlighting the importance of surveillance of and genetic testing for nucleoside analog resistance in the helicase.


Assuntos
COVID-19 , Vírus da Hepatite Murina , Animais , Camundongos , Humanos , Nucleosídeos/farmacologia , Vacinas contra COVID-19 , SARS-CoV-2/genética , SARS-CoV-2/metabolismo , Replicação Viral/genética , Tratamento Farmacológico da COVID-19 , Mutação , Vírus da Hepatite Murina/genética , Antivirais/farmacologia , Antivirais/química , RNA Polimerase Dependente de RNA/metabolismo , RNA , Proteínas não Estruturais Virais/genética , Proteínas não Estruturais Virais/metabolismo
4.
Oecologia ; 201(2): 575-584, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36688977

RESUMO

Atmospheric nitrogen (N) deposition is altering grassland productivity and community structure worldwide. Deposited N comes in different forms, which can have different consequences for productivity due to differences in their fertilization and acidification effects. We hypothesize that these effects may be mediated by changes in plant functional traits. We investigated the responses of aboveground primary productivity and community functional composition to addition of three nitrogen compounds (NH4NO3, [NH4]2SO4, and CO[NH2]2) at the rates of 0, 5, 10, 20 g N m-2 yr-1. We used structural equation modeling (SEM) to evaluate how functional structure influences the responses of productivity to the three N compounds. Nitrogen addition increased community-level leaf chlorophyll content but decreased leaf dry matter content and phosphorus concentration. These changes were mainly due to intra-specific variation. Functional dispersion of traits was reduced by N addition through changes in species composition. SEM revealed that fertilization effects were more important than soil acidification for the responses of productivity to CO(NH2)2 addition, which enhanced productivity by decreasing functional trait dispersion. In contrast, the effects of (NH4)2SO4 and NH4NO3 were primarily due to soil acidification, influencing productivity via community-weighted means of functional traits. Our results suggest that N forms with different fertilizing and acidifying effects influence productivity via different functional traits pathways. Our study also emphasizes the need for in situ experiments with the relevant N compounds to accurately understand and predict the ecological effects of atmospheric N deposition on ecosystems.


Assuntos
Ecossistema , Compostos de Nitrogênio , Pradaria , Nitrogênio/metabolismo , Solo/química
5.
Glob Chang Biol ; 29(6): 1591-1605, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36515451

RESUMO

Determining the abundance of N isotope (δ15 N) in natural environments is a simple but powerful method for providing integrated information on the N cycling dynamics and status in an ecosystem under exogenous N inputs. However, whether the input of different N compounds could differently impact plant growth and their 15 N signatures remains unclear. Here, the response of 15 N signatures and growth of three dominant plants (Leymus chinensis, Carex duriuscula, and Thermopsis lanceolata) to the addition of three N compounds (NH4 HCO3 , urea, and NH4 NO3 ) at multiple N addition rates were assessed in a meadow steppe in Inner Mongolia. The three plants showed different initial foliar δ15 N values because of differences in their N acquisition strategies. Particularly, T. lanceolata (N2 -fixing species) showed significantly lower 15 N signatures than L. chinensis (associated with arbuscular mycorrhizal fungi [AMF]) and C. duriuscula (associated with AMF). Moreover, the foliar δ15 N of all three species increased with increasing N addition rates, with a sharp increase above an N addition rate of ~10 g N m-2  year-1 . Foliar δ15 N values were significantly higher when NH4 HCO3 and urea were added than when NH4 NO3 was added, suggesting that adding weakly acidifying N compounds could result in a more open N cycle. Overall, our results imply that assessing the N transformation processes in the context of increasing global N deposition necessitates the consideration of N deposition rates, forms of the deposited N compounds, and N utilization strategies of the co-existing plant species in the ecosystem.


Assuntos
Micorrizas , Nitrogênio , Compostos de Nitrogênio , Ecossistema , Plantas/microbiologia , Micorrizas/fisiologia , Solo
6.
Ecology ; 104(3): e3941, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36469035

RESUMO

Elucidating mechanisms underlying community assembly and biodiversity patterns is central to ecology and evolution. Genome size (GS) has long been hypothesized to potentially affect species' capacity to tolerate environmental stress and might therefore help drive community assembly. However, its role in driving ß-diversity (i.e., spatial variability in species composition) remains unclear. We measured GS for 161 plant species and community composition across 52 sites spanning a 3200-km transect in the temperate grasslands of China. By correlating the turnover of species composition with environmental dissimilarity, we found that resource filtering (i.e., environmental dissimilarity that includes precipitation, and soil nitrogen and phosphorus concentrations) affected ß-diversity patterns of large-GS species more than small-GS species. By contrast, geographical distance explained more variation of ß-diversity for small-GS than for large-GS species. In a 10-year experiment manipulating levels of water, nitrogen, and phosphorus, adding resources increased plant biomass in species with large GS, suggesting that large-GS species are more sensitive to the changes in resource availability. These findings highlight the role of GS in driving community assembly and predicting species responses to global change.


Assuntos
Biodiversidade , Pradaria , Plantas , Solo , Nitrogênio , Fósforo
7.
J Environ Manage ; 321: 115919, 2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-36001914

RESUMO

Plant and soil microbial community composition play a central role in maintaining ecosystem functioning. Most studies have focused on soil microbes in the bulk soil, the rhizosphere and inside plant roots, however, less is known about the soil community that exists within soil aggregates, and how these soil communities influence plant biomass production. Here, using field-conditioned soil collected from experimental ungrazed and grazed grasslands in Inner Mongolia, China, we examined the composition of microbiomes inside soil aggregates of various size classes, and determined their roles in plant-soil feedbacks (PSFs), diversity-productivity relationships, and diversity-dependent overyielding. We found that grazing induced significantly positive PSF effects, which appeared to be mediated by mycorrhizal fungi, particularly under plant monocultures. Despite this, non-additive effects of microbiomes within different soil aggregates enhanced the strength of PSF under ungrazed grassland, but decreased PSF strength under intensively grazed grassland. Plant mixture-related increases in PSF effects markedly enhanced diversity-dependent overyielding, primarily due to complementary effects. Selection effects played far less of a role. Our work suggests that PSF contributes to diversity-dependent overyielding in grasslands via non-additive effects of microbiomes within different soil aggregates. The implication of our work is that assessing the effectiveness of sustainable grassland restoration and management on soil properties requires inspection of soil aggregate size-specific microbiomes, as these are relevant determinants of the feedback interactions between soil and plant performance.


Assuntos
Microbiota , Solo , Biomassa , Ecossistema , Pradaria , Plantas , Microbiologia do Solo
8.
Sci Total Environ ; 849: 157916, 2022 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-35963412

RESUMO

The nitrogen­phosphorus (N-P) imbalance induced by N enrichment has received increasing concerns, because N:P ratios play a critical role in driving many fundamental ecological processes. Given the simultaneous occurrence of different global change drivers, it is important to understand whether and how would such N-induced N-P imbalance would be mediated by other global change factors. We examined the interactive effects of N addition (10 g N m-2 yr-1) and extreme drought (-66 % rainfall during the growing season) on species- and community-level N:P ratios in both green and senesced leaves in a temperate grassland of northern China. Extreme drought did not alter soil available N:P ratio under ambient N conditions, but increased that under N enriched conditions. Further, extreme drought did not alter the community-level N:P in both green and senesced leaves under ambient N conditions but significantly enhanced that under N enriched conditions. The drought-induced species turnover made a significant positive contribution to the changes in the community-level N:P ratio under N enriched conditions, but not under ambient N conditions. Our results suggest that the N-induced ecosystem N-P imbalance would be exacerbated by extreme drought event, the frequency of which is predicted to increase across global drylands. Such N-P imbalance would have consequences on litter decomposition, nutrient cycling, and the structures of above- and below-ground food webs. Our findings highlighted the complexity in predicting ecosystem N-P imbalance given the interactions between different global change drivers.


Assuntos
Nitrogênio , Fósforo , Secas , Ecossistema , Pradaria , Nitrogênio/farmacologia , Solo
9.
Environ Pollut ; 309: 119720, 2022 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-35810985

RESUMO

Human-induced nitrogen (N) and phosphorus (P) enrichment have profound effects on grassland net primary production (NPP) and species richness. However, a comprehensive understanding of the relative contribution of N vs. P addition and their interaction on grassland NPP increase and species loss remains elusive. We compiled data from 80 field manipulative studies and conducted a meta-analysis (2107 observations world-wide) to evaluate the individual and combined effects of N and P addition on grassland NPP and species richness. We found that both N addition and P addition significantly enhanced grassland above-ground NPP (ANPP; 33.2% and 14.2%, respectively), but did not affect total NPP, below-ground NPP (BNPP), and species evenness. Species richness significantly decreased with N addition (11.7%; by decreasing forbs) probably due to strong decreased soil pH, but not with P addition. The combined effects of N and P addition were generally stronger than the individual effects of N or P addition, and we found the synergistic effects on ANPP, and additive effects on total NPP, BNPP, species richness, and evenness within the combinations of N and P addition. In addition, N and P addition effects were strongly affected by moderator variables (e.g. climate and fertilization type, duration and amount of fertilizer addition). These results demonstrate a higher relative contribution of N than P addition to grassland NPP increase and species loss, although the effects varied across climate and fertilization types. The existing data also reveals that more long-term (≥5 years) experimental studies that combine N and P and test multifactor effects in different climate zones (particularly in boreal grasslands) are needed to provide a more solid basis for forecasting grassland community response and C sequestration response to nutrient enrichment at the global scale.


Assuntos
Pradaria , Nitrogênio , Biodiversidade , Biomassa , Ecossistema , Humanos , Fósforo
10.
Sci Transl Med ; 14(656): eabo0718, 2022 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-35482820

RESUMO

The nucleoside analog remdesivir (RDV) is a Food and Drug Administration-approved antiviral for treatment of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections. Thus, it is critical to understand factors that promote or prevent RDV resistance. We passaged SARS-CoV-2 in the presence of increasing concentrations of GS-441524, the parent nucleoside of RDV. After 13 passages, we isolated three viral lineages with phenotypic resistance as defined by increases in half-maximal effective concentration from 2.7- to 10.4-fold. Sequence analysis identified nonsynonymous mutations in nonstructural protein 12 RNA-dependent RNA polymerase (nsp12-RdRp): V166A, N198S, S759A, V792I, and C799F/R. Two lineages encoded the S759A substitution at the RdRp Ser759-Asp-Asp active motif. In one lineage, the V792I substitution emerged first and then combined with S759A. Introduction of S759A and V792I substitutions at homologous nsp12 positions in murine hepatitis virus demonstrated transferability across betacoronaviruses; introduction of these substitutions resulted in up to 38-fold RDV resistance and a replication defect. Biochemical analysis of SARS-CoV-2 RdRp encoding S759A demonstrated a roughly 10-fold decreased preference for RDV-triphosphate (RDV-TP) as a substrate, whereas nsp12-V792I diminished the uridine triphosphate concentration needed to overcome template-dependent inhibition associated with RDV. The in vitro-selected substitutions identified in this study were rare or not detected in the greater than 6 million publicly available nsp12-RdRp consensus sequences in the absence of RDV selection. The results define genetic and biochemical pathways to RDV resistance and emphasize the need for additional studies to define the potential for emergence of these or other RDV resistance mutations in clinical settings.


Assuntos
Antivirais , Tratamento Farmacológico da COVID-19 , Farmacorresistência Viral , RNA Polimerase Dependente de RNA , SARS-CoV-2 , Monofosfato de Adenosina/análogos & derivados , Alanina/análogos & derivados , Animais , Antivirais/farmacologia , Farmacorresistência Viral/genética , Humanos , Camundongos , Mutação/genética , RNA Viral/genética , RNA Polimerase Dependente de RNA/genética , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/genética
11.
Glob Chang Biol ; 28(8): 2711-2720, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35098614

RESUMO

Temporal stability of net primary productivity (NPP) is important for predicting the reliable provisioning of ecosystem services under global changes. Although nitrogen (N) addition is known to affect the temporal stability of aboveground net primary productivity (ANPP), it is unclear how it impacts that of belowground net primary productivity (BNPP) and NPP, and whether such effects are scale dependent. Here, using experimental N addition in a grassland, we found different responses of ANPP and BNPP stability to N addition at the local scale and that these responses propagated to the larger spatial scale. That is, N addition significantly decreased the stability of ANPP but did not affect the stability of BNPP and NPP at the two scales investigated. Additionally, spatial asynchrony of both ANPP and BNPP among communities provided greater stability at the larger scale and was not affected by N addition. Our findings challenge the traditional view that N addition would reduce ecosystem stability based on results from aboveground dynamics, thus highlighting the importance of viewing ecosystem stability from a whole system perspective.


Assuntos
Ecossistema , Pradaria , Nitrogênio , Poaceae
12.
Ecology ; 103(3): e3616, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34923633

RESUMO

Phosphorus (P) limitation is expected to increase due to nitrogen (N)-induced terrestrial eutrophication, although most soils contain large P pools immobilized in minerals (Pi ) and organic matter (Po ). Here we assessed whether transformations of these P pools could increase plant available pools alleviating P limitation under enhanced N availability. The mechanisms underlying these possible transformations were explored by combining results from a 10-year field N addition experiment and a 3700-km transect covering wide ranges in soil pH, soil N, aridity, leaching, and weathering that could affect soil P status in grasslands. Nitrogen addition promoted the dissolution of immobile Pi (mainly Ca-bound recalcitrant P) to more available forms of Pi (including Al- and Fe-bound P fractions and Olsen P) by decreasing soil pH from 7.6 to 4.7, but did not affect Po . Soil total P declined by 10% from 385 ± 6.8 to 346 ± 9.5 mg kg-1 , whereas available P increased by 546% from 3.5 ± 0.3 to 22.6 ± 2.4 mg kg-1 after the 10-year N addition, associated with an increase in Pi mobilization, plant uptake, and leaching. Similar to the N addition experiment, the drop in soil pH from 7.5 to 5.6 and increase in soil N concentration along the grassland transect were associated with an increased ratio between relatively mobile Pi and immobile Pi . Our results provide a new mechanistic understanding of the important role of soil Pi mobilization in maintaining plant P supply and accelerating biogeochemical P cycles under anthropogenic N enrichment. This mobilization process temporarily buffers ecosystem P limitation or even causes P eutrophication, but will extensively deplete soil P pools in the long run.


Assuntos
Fósforo , Solo , Ecossistema , Pradaria , Minerais , Nitrogênio/análise
13.
Glob Chang Biol ; 27(22): 5976-5988, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34343388

RESUMO

Higher ecosystem nitrogen (N) inputs resulting from human activities often suppress soil microbial biomass and respiration, thereby altering biogeochemical cycling. Soil acidification and carbon (C) limitation may drive these microbial responses, yet their relative importance remains elusive, which limits our understanding of the longer term effects of increasing N inputs. In a field experiment with continuous N addition at seven different rates from 0 to 50 g N m-2  year-1 over 6 years in a temperate grassland of Inner Mongolia, China, we examined the responses of soil microbial biomass and respiration to changes in soil acidity and C availability by adding lime and/or glucose to soil samples. Soil microbial biomass and respiration did only weakly respond to increasing soil pH, but increased strongly in response to higher C availability with increasing N addition rates. Soil net N immobilization increased in response to glucose addition, and soil microbial biomass increased at higher rates than microbial respiration along the gradient of previous N addition rates, both suggesting increasingly reinforced microbial C limitation with increasing N addition. Our results provide clear evidence for strong N-induced microbial C limitation, but only little support for soil acidity effects within the initial pH range of 4.73-7.86 covered by our study. Field data support this conclusion by showing reduced plant C allocation belowground in response to N addition, resulting in soil microbial C starvation over the long term. In conclusion, soil microbial biomass and respiration under N addition were strongly dependent on C availability, most likely originating from plant belowground C inputs, and was much less affected by changes in soil pH. Our data help clarify a long-standing debate about how increasing N input rates affect soil microbial biomass and respiration, and improve the mechanistic understanding of the linkages between ecosystem N enrichment and C cycling.


Assuntos
Nitrogênio , Solo , Biomassa , Carbono , Ecossistema , Pradaria , Humanos , Concentração de Íons de Hidrogênio , Nitrogênio/análise , Microbiologia do Solo
14.
Environ Pollut ; 289: 117969, 2021 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-34426201

RESUMO

Nitrogen (N) addition and mowing can significantly influence micronutrient cycling in grassland ecosystems. It remains largely unknown about how different forms of added N affect micronutrient status in plant-soil systems. We examined the effects of different N compounds of (NH4)2SO4, NH4NO3, and urea with and without mowing on micronutrient Fe, Mn, Cu, and Zn in soil-plant systems in a meadow steppe. The results showed that (NH4)2SO4 addition had a stronger negative effect on soil pH compared with NH4NO3 and urea, resulting in higher increases in soil available Fe and Mn herein. Nitrogen addition decreased plant community-level biomass weighted (hereafter referred to as community-level) Fe concentration but increased Mn concentration, with a greater effect under (NH4)2SO4 addition. Community-level Cu concentration increased with (NH4)2SO4 and NH4NO3 addition only under mowing treatment. Mowing synergistically interacted with urea addition to increase community-level Mn and Zn concentrations even with decreased soil organic matter, possibly because of compensatory plant growth and thus higher plant nutrient uptake intensity under mowing treatment. Overall, responses of plant-soil micronutrients to N addition varied with mowing and different N compounds, which were mainly regulated by soil physicochemical properties and plant growth. Different magnitude of micronutrient responses in plants and soils shed light on the necessity to consider the role of various N compounds in biogeochemical models when projecting the effects of N enrichment on grassland ecosystems.


Assuntos
Nitrogênio , Solo , China , Ecossistema , Pradaria , Micronutrientes , Nitrogênio/análise
15.
J Anim Ecol ; 90(5): 1367-1378, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33660855

RESUMO

Understanding biogeographic patterns of community assemblages is a core objective in ecology, but for soil communities these patterns are poorly understood. To understand the spatial patterns and underlying mechanisms of ß-diversity in soil communities, we investigated the ß-diversity of soil nematode communities along a 3,200-km transect across semi-arid and arid grasslands. Spatial turnover and nested-resultant are the two fundamental components of ß-diversity, which have been attributed to various processes of community assembly. We calculated the spatial turnover and nested-resultant components of soil nematode ß-diversity based on the ß-partitioning framework. Distance matrices for the dissimilarity of soil nematode communities were computed using the 'Sørensen' method. We fitted negative exponential models to compare the distance decay patterns in nematode community similarity with geographic distance and plant community distance in three vegetation types (desert, desert steppe and typical steppe) and along the whole transect. Variation partitioning was used to distinguish the contribution of geographic distance and environmental variables to ß-diversity and the partitioned components. Geographic distance and environmental filtering jointly drove the ß-diversity patterns of nematode community, but environmental filtering explained more of the variation in ß-diversity in the desert and typical steppe, whereas geographic distance was important in the desert steppe. Nematode community assembly was explained more by the spatial turnover component than by the nested-resultant component. For nematode feeding groups, the ß-diversity in different vegetation types increased with geographic distance and plant community distance, but the nested-resultant component of bacterial feeders in the desert ecosystem decreased with geographic distance and plant community distance. Our findings show that spatial variation in soil nematode communities is regulated by environmental processes at the vegetation type scale, while spatial processes mainly work on the regional scale, and emphasize that the spatial patterns and drivers of nematode ß-diversity differ among trophic levels. Our study provides insight into the ecological processes that maintain soil biodiversity and biogeographic patterns of soil community assemblage at large spatial scales.


Assuntos
Nematoides , Solo , Animais , Biodiversidade , Ecossistema , Pradaria
16.
Sci Total Environ ; 772: 144951, 2021 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-33571760

RESUMO

Leaf resorption is critical for considerations of how plants use and recycle nutrients, but fundamental unknowns remain regarding the controls over plant nutrient resorption. Empirical studies suggest at least three basic types of resorption control, including (i) stoichiometric control, (ii) nutrient limitation control, and (iii) nutrient concentration control strategies. However, which strategies are adopted in given conditions and whether multiple strategies coexist in an ecosystem are still open questions. To address these unknowns, leaf nitrogen (N) and phosphorus (P) resorption efficiency (NRE and PRE) and proficiency were measured for seven woody species at a nutrient-rich but potentially N-limited secondary forest and a nutrient-poor and potentially P-limited secondary forest. NRE was higher in the N-limited forest while PRE was higher in the P-limited forest, suggesting that plants responded to nutrient limitation with preferential resorption of the more limiting nutrient. NRE:PRE was positively related to leaf N:P ratios within each forest, demonstrating a role for stoichiometric control. Nutrient concentration controls were also found, with higher nutrient resorption proficiency in the nutrient-poor forest than in the nutrient-rich forest. The controls of stoichiometry and nutrient concentration were community-wide, but the nutrient limitation control was species-specific. Our results highlight the coexistence of multiple nutrient resorption strategies in a single ecosystem, and suggest these strategies are scale-dependent.


Assuntos
Ecossistema , Fósforo , Nitrogênio , Nutrientes , Folhas de Planta , Plantas , Solo
17.
PLoS Pathog ; 17(1): e1009226, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33465137

RESUMO

Recombination is proposed to be critical for coronavirus (CoV) diversity and emergence of SARS-CoV-2 and other zoonotic CoVs. While RNA recombination is required during normal CoV replication, the mechanisms and determinants of CoV recombination are not known. CoVs encode an RNA proofreading exoribonuclease (nsp14-ExoN) that is distinct from the CoV polymerase and is responsible for high-fidelity RNA synthesis, resistance to nucleoside analogues, immune evasion, and virulence. Here, we demonstrate that CoVs, including SARS-CoV-2, MERS-CoV, and the model CoV murine hepatitis virus (MHV), generate extensive and diverse recombination products during replication in culture. We show that the MHV nsp14-ExoN is required for native recombination, and that inactivation of ExoN results in decreased recombination frequency and altered recombination products. These results add yet another critical function to nsp14-ExoN, highlight the uniqueness of the evolved coronavirus replicase, and further emphasize nsp14-ExoN as a central, completely conserved, and vulnerable target for inhibitors and attenuation of SARS-CoV-2 and future emerging zoonotic CoVs.


Assuntos
Tratamento Farmacológico da COVID-19 , Infecções por Coronavirus/tratamento farmacológico , Exorribonucleases/farmacologia , SARS-CoV-2/efeitos dos fármacos , Replicação Viral/efeitos dos fármacos , Antivirais/farmacologia , COVID-19/virologia , Infecções por Coronavirus/virologia , Exorribonucleases/genética , Humanos , Recombinação Genética/efeitos dos fármacos , SARS-CoV-2/patogenicidade , Proteínas não Estruturais Virais/genética , Replicação Viral/genética
18.
New Phytol ; 229(1): 296-307, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32762047

RESUMO

The continuing nitrogen (N) deposition observed worldwide alters ecosystem nutrient cycling and ecosystem functioning. Litter decomposition is a key process contributing to these changes, but the numerous mechanisms for altered decomposition remain poorly identified. We assessed these different mechanisms with a decomposition experiment using litter from four abundant species (Achnatherum sibiricum, Agropyron cristatum, Leymus chinensis and Stipa grandis) and litter mixtures representing treatment-specific community composition in a semi-arid grassland under long-term simulation of six different rates of N deposition. Decomposition increased consistently with increasing rates of N addition in all litter types. Higher soil manganese (Mn) availability, which apparently was a consequence of N addition-induced lower soil pH, was the most important factor for faster decomposition. Soil C : N ratios were lower with N addition that subsequently led to markedly higher bacterial to fungal ratios, which also stimulated litter decomposition. Several factors contributed jointly to higher rates of litter decomposition in response to N deposition. Shifts in plant species composition and litter quality played a minor role compared to N-driven reductions in soil pH and C : N, which increased soil Mn availability and altered microbial community structure. The soil-driven effect on decomposition reported here may have long-lasting impacts on nutrient cycling, soil organic matter dynamics and ecosystem functioning.


Assuntos
Ecossistema , Nitrogênio , Pradaria , Folhas de Planta , Plantas , Poaceae , Solo
19.
Sci Total Environ ; 740: 139740, 2020 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-32927530

RESUMO

Most wetlands have been subject to changes in flooding regimes by climate change and human activities, resulting in widespread alteration of wetland plants at different organizational levels. However, scaling the responses of wetland plants to changes in flooding regimes is still challenging, because flooding could indirectly affect wetland plants through affecting environment factors (e.g. soil properties). During the non-flooding period, we investigated leaf N and P stoichiometry at three organizational levels (intra-species, inter-species, inter-community) along a flooding duration gradient in a lakeshore meadow of Poyang Lake floodplain, China. At the intra-species level, leaf N and P stoichiometry showed species-specific responses to flooding duration. At the inter-species level, leaf N or P contents or N:P ratio showed no significant response to flooding duration. At the inter-community level, leaf N and P contents significantly increased with flooding duration, while leaf N:P ratio decreased. At each organizational level, leaf N and P stoichiometry showed poor correlation with soil N and P stoichiometry. Moreover, intra-specific responses of leaf N and P contents to flooding duration and soil nutrient content increased with mean flooding duration of species distribution, which was the index of species hydrological niche. Intraspecific variation had lower contribution than species turnover to variations in community leaf nutrient stoichiometry. In all, flooding duration affected leaf N and P stoichiometry mainly through direct pathway at the intra-species and inter-community level, rather than the indirect pathway via soil nutrient stoichiometry. Therefore, our results have implications for scaling up from environmental conditions to ecosystem processes via wetland plant communities.


Assuntos
Ecossistema , Nitrogênio/análise , China , Nutrientes , Fósforo , Folhas de Planta/química , Solo
20.
Cell Rep ; 32(3): 107940, 2020 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-32668216

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of the novel viral disease COVID-19. With no approved therapies, this pandemic illustrates the urgent need for broad-spectrum antiviral countermeasures against SARS-CoV-2 and future emerging CoVs. We report that remdesivir (RDV) potently inhibits SARS-CoV-2 replication in human lung cells and primary human airway epithelial cultures (EC50 = 0.01 µM). Weaker activity is observed in Vero E6 cells (EC50 = 1.65 µM) because of their low capacity to metabolize RDV. To rapidly evaluate in vivo efficacy, we engineered a chimeric SARS-CoV encoding the viral target of RDV, the RNA-dependent RNA polymerase of SARS-CoV-2. In mice infected with the chimeric virus, therapeutic RDV administration diminishes lung viral load and improves pulmonary function compared with vehicle-treated animals. These data demonstrate that RDV is potently active against SARS-CoV-2 in vitro and in vivo, supporting its further clinical testing for treatment of COVID-19.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...