Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Materials (Basel) ; 17(7)2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38612097

RESUMO

Nonmetallic ionic liquids (ILs) exhibit unique advantages in catalyzing poly (ethylene terephthalate) (PET) glycolysis, but usually require longer reaction times. We found that exposure to UV radiation can accelerate the glycolysis reaction and significantly reduce the reaction time. In this work, we synthesized five nonmetallic dibasic ILs, and their glycolysis catalytic activity was investigated. 1,8-diazabicyclo [5,4,0] undec-7-ene imidazole ([HDBU]Im) exhibited better catalytic performance. Meanwhile, UV radiation is used as a reinforcement method to improve the PET glycolysis efficiency. Under optimal conditions (5 g PET, 20 g ethylene glycol (EG), 0.25 g [HDBU]Im, 10,000 µW·cm-2 UV radiation reacted for 90 min at 185 °C), the PET conversion and BHET yield were 100% and 88.9%, respectively. Based on the UV-visible spectrum, it was found that UV radiation can activate the C=O in PET. Hence, the incorporation of UV radiation can considerably diminish the activation energy of the reaction, shortening the reaction time of PET degradation. Finally, a possible reaction mechanism of [HDBU]Im-catalyzed PET glycolysis under UV radiation was proposed.

3.
Int J Biol Macromol ; 255: 128125, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37984571

RESUMO

Transforming lignin into aromatic monomers is critically attractive to develop green and sustainable energy supplies. However, the usage of the additional catalysts like metal or base/acid is commonly limited by the caused repolymerized and environmental issues. The key step is to mediate electron transfer in lignin to trigger lignin C-C/C-O bonds cleavage without the catalysts mentioned above. Here, we report that the ionic liquids [BMim][ClO4] was found to trigger lignin electron transfer to cleave the C-C/C-O bonds for aromatic monomers without any additional catalyst. The proton transfer from [BMim]+ to [ClO4]- could polarize the anion and decrease its structure stability, upon which the active hydroxyl radical generated and induced lignin C-C/C-O bonds fragmentation via free radical-mediated routes with the assistance of photothermal synergism. About 4.4 wt% yields of aromatic monomers, mainly composed of vanillin and acetosyringone, are afforded in [BMim][ClO4] under UV-light irradiation in the air at 80 °C. This work opens the way to produce value-added aromatic monomers from lignin using an eco-friendly, energy-efficient, and simple route that may contribute to the sustainable utilization of renewable natural resources.


Assuntos
Líquidos Iônicos , Líquidos Iônicos/química , Lignina/química , Álcalis , Percloratos , Catálise
4.
J Hazard Mater ; 465: 133203, 2024 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-38103294

RESUMO

Antibacterial compounds that reduce extracellular polymeric substances (EPS) are needed to avoid bacterial biofilms in water pipelines. Herein, green one-pot synthesis of α-aminophosphonates (α-Amps) [A-G] was achieved by using ionic liquid (IL) as a Lewis acid catalyst. The synthesized α-Amp analogues were tested against different bacteria such as Bacillus subtilis, Escherichia coli, and Pseudomonas aeruginosa. The representative [B] analogue showed an efficient antibacterial effect with MIC values of 3.13 µg/mL for E. coli, P. aeruginosa, and 6.25 µg/mL for B. subtilis. Additionally, a strong ability to eliminate the mature bacterial biofilm, with super-MIC values of 12.5 µg/mL for E. coli, P. aeruginosa, and 25 µg/mL for B. subtilis. Moreover, bacterial cell disruption by ROS formation was also tested, and the compound [B] revealed the highest ROS level compared to other compounds and the control, and efficiently destroyed the extracellular polymeric substances (EPS). The docking study confirmed strong interactions between [B] analogue and protein structures with a binding affinity of -6.65 kCal/mol for the lyase protein of gram-positive bacteria and -6.46 kCal/mol for DNA gyrase of gram-negative bacteria. The results showed that α-Amps moiety is a promising candidate for developing novel antibacterial and anti-biofilm agents for clean water supply.


Assuntos
Antibacterianos , Escherichia coli , Antibacterianos/química , Simulação de Acoplamento Molecular , Espécies Reativas de Oxigênio , Bactérias , Biofilmes , Testes de Sensibilidade Microbiana
5.
Bioresour Technol ; 383: 129178, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37270148

RESUMO

This study reported that surfactants could facilitate the organosolv pretreatment of lignocellulosic biomass (LCB) to produce fermentable sugars and highly active lignin. Under the optimized conditions, the surfactant-assisted glycerol organosolv (saGO) pretreatment achieved 80.7% delignification with a retention of 93.4% cellulose and 83.0% hemicellulose. The saGO pretreated substrate exhibited an excellent enzymatic hydrolyzability, achieving 93% of glucose yield from the enzymatic hydrolysis at 48 h. Structural analysis showed that the saGO lignin contained rich ß-O-4 bondings with less repolymerization and lower phenolic hydroxyl groups, thus forming highly reactive lignin fragments. The analysis evidenced that the surfactant graft the lignin by structural modification, which was responsible for the excellent substrate hydrolyzability. The co-production of fermentable sugars and organosolv lignin almost recovered a gross energy (87.2%) from LCB. Overall, the saGO pretreatment holds a lot of promise for launching a novel pathway towards lignocellulosic fractionation and lignin valorization.


Assuntos
Glicerol , Lignina , Açúcares , Tensoativos , Biomassa , Hidrólise
6.
Phys Chem Chem Phys ; 25(15): 10481-10494, 2023 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-36987608

RESUMO

Choline chloride (ChCl)-carboxylic acid deep eutectic solvents (DESs) are promising green solvents for lignocellulose pretreatment, de-aromatization of gasoline, battery recycling, etc. Micro interactions determine the physical properties of DESs, such as melting point, viscosity, and solubility. In the present work, the structures of choline chloride/formic acid (FA) and choline chloride/acetic acid (AA) with a 1 : 2 molar ratio were investigated by wide-angle X-ray scattering, empirical potential structure refinement (EPSR) and density functional theory (DFT) calculations. Reduced density gradient (RDG) and atoms in molecules (AIM) show that hydrogen bonds and carbon-hydrogen bonds exist in choline chloride-carboxylic acid DESs. EPSR modelling based on the gauche choline cation model reveals the interactions between DES components. Cl- plays an important role in maintaining the structural stability of choline chloride-carboxylic acid DESs, by participating in the formation of hydrogen bonds, carbon-hydrogen bonds, and acting as a bridge for indirect interaction, including between choline cations and carboxylic acid molecules. Molecular size and steric hindrance elucidate the formation of different sizes of clusters (≤10 molecules) and chains (≤5 molecules) in DESs. Spatial density functions show that formic acid and acetic acid have a strong orientational preference. The strong interaction between Ch+ and FA and the existence of the Cl- bridge significantly destroyed the lattice structure of ChCl, resulting in the melting point of ChClFA (<-90 °C) being lower than that of ChClAA (-8.98 °C). This fundamental understanding of the structure will enable the development of green, economical, and nontoxic choline chloride-carboxylic acid DESs.

7.
Materials (Basel) ; 16(6)2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36984242

RESUMO

Compared with conventional pyrolysis, steam-assisted pyrolysis of polyethylene terephthalate (PET) can effectively eliminate char and upgrade terephthalic acid (TPA). However, during steam-assisted pyrolysis of PET, the degree of cracking still varies greatly, and while some of the product is excessively cracked to gas, the other part is still insufficiently cracked. In addition, these two types of products seriously affect the yield and purity of TPA. To further enhance the TPA, an attempt was made to reduce these impurities simultaneously by synergistic catalysis among the different components of the metal-acid catalyst. Through a series of experiments, Pt@Hzsm-5 was screened as the optimal catalyst. In the catalytic steam-assisted pyrolysis of PET, the optimum reaction temperature decreased to 400 °C, the calculated yield of TPA increased to 98.23 wt%, and the purity increased to 92.2%. The Pt@Hzsm-5 could be recycled three times with no significant decrease in the obtained yield of TPA. The catalytic mechanism of the Pt@Hzsm-5 was investigated through the analysis of the products and isotope tracing experiments. The Pt catalyzed the hydrogen transfer reaction between the water molecules and PET molecules, which inhibited the excessive cracking of TPA by improving the hydrogen transfer efficiency, reduced the generation of gaseous products, and improved the calculated yield of TPA. In contrast, the Hzsm-5 catalyzed the reaction of monovinyl ester cracking to TPA, effectively reducing the impurities in the solid product, increasing the olefin yield, and improving the purity of TPA. This discovery not only clarifies the synergistic catalytic effect of the Pt@Hzsm-5 in the steam-assisted pyrolysis of the PET reaction but also lays the foundation for further screening of other inexpensive metal-acid catalysts. This is of great significance to realize the industrial application of TPA preparation by PET pyrolysis.

8.
Zhongguo Zhong Yao Za Zhi ; 48(2): 399-414, 2023 Jan.
Artigo em Chinês | MEDLINE | ID: mdl-36725230

RESUMO

This study aims to explore the chemical composition of Rehmanniae Radix braised with mild fire and compare the effect of processing method on the chemical composition of Rehmanniae Radix. To be specific, ultra-high performance liquid chromatography with linear ion trap-orbitrap mass spectrometry(UHPLC-LTQ-Orbitrap MS) was used to screen the chemical constituents of Rehmanniae Radix. The chemical constituents were identified based on the relative molecular weight and fragment ions, literature information, and Human Metabolome Database(HMDB). The ion peak area ratio of each component before and after processing was used as the index for the variation. SIMCA was employed to establish principal component analysis(PCA) and orthogonal partial least squares discriminant analysis(OPLS-DA) models of different processed products. According to the PCA plot, OPLS-DA plot, and VIP value, the differential components before and after the processing were screened out. The changes of the content of differential components with the processing method were analyzed. A total of 66 chemical components were identified: 57 of raw Rehmanniae Radix, 55 of steamed Rehmanniae Radix, 55 of wine-stewed Rehmanniae Radix, 51 of repeatedly steamed and sundried Rehmanniae Radix Praeparata, 62 of traditional bran-braised Rehmanniae Radix, and 63 of electric pot-braised Rehmanniae Radix. Among them, the 9 flavonoids of braised Rehmanniae Radix were from Citri Reticulatae Pericarpium. PCA suggested significant differences in the chemical composition of Rehmanniae Radix Praeparata prepared with different processing methods. OPLS-DA screened out 32 chemical components with VIP value >1 as the main differential components. Among the differential components, 9 were unique to braised Rehmanniae Radix(traditional bran-braised, electric pot-braised) and the degradation rate of the rest in braised(traditional bran-braised, electric pot-braised) or repeatedly steamed and sundried Rehmanniae Radix was higher than that in the steamed or wine-stewed products. The results indicated the chemical species and component content of Rehmanniae Radix changed significantly after the processing. The 32 components, such as rehmapicrogenin, martynoside, jionoside D, aeginetic acid, hesperidin, and naringin, were the most important compounds to distinguish different processed products of Rehmanniae Radix. The flavonoids introduced by Citri Reticulatae Pericarpium as excipient may be the important material basis for the effectiveness of braised Rehmanniae Radix compared with other processed products.


Assuntos
Medicamentos de Ervas Chinesas , Rehmannia , Humanos , Cromatografia Líquida de Alta Pressão , Medicamentos de Ervas Chinesas/química , Extratos Vegetais/química , Rehmannia/química , Flavonoides/análise
9.
Inorg Chem ; 61(47): 18998-19009, 2022 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-36378068

RESUMO

By introducing Brønsted acidic ionic liquids (ILs), two dual-emitting lanthanide metal-organic complexes (Ln-MOCs) of {[Ln(imdc)(CH3OH)(H2O)3]Cl2}n (LnIMDC, Ln = Eu and Tb, imdc = 1,3-bis(carboxymethyl)imidazolium ion) were first prepared under solvothermal conditions. The crystal structures of LnIMDC were measured by single-crystal X-ray diffraction, and the crystal growth process of LnIMDC was carefully studied. It is found that the crystals are three-dimensional supramolecular structures built up by Ln-O coordination bonds and supramolecular forces. In the temperature range of 303-403 K, LnIMDC show good temperature-dependent emission properties with maximum relative thermal sensitivities of 3.29% K-1 at 375 K and 2.08% K-1 at 303 K for EuIMDC and TbIMDC, respectively. It is worth mentioning that both EuIMDC and TbIMDC exhibit good linear ratiometric emission-temperature response in temperature ranges of 353-403 and 323-373 K, respectively, which render EuIMDC and TbIMDC good ratiometric thermometers in high temperature range. Computational studies on the energy level of ILs [H2imdc]Cl and [imdc]- ion were performed, which validated the high energy transfer efficiency between the [imdc]- and Ln3+ ions and the unique solution concentration- and wavelength-dependent fluorescence properties of [H2imdc]Cl. The high fluorescence performance opens up new opportunities for practical applications of ILs in optical sensing.

10.
Curr Med Sci ; 42(5): 1033-1045, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36260266

RESUMO

OBJECTIVE: MicroRNA (miRNA/miR)-633 is dysregulated in several types of cancers and is involved in tumorigenesis. However, the function and role of this miRNA in gastric cancer (GC) are not fully understood. The aim of the present study was to evaluate miR-633 expression in GC cell lines and in GC tissue vs. adjacent normal tissue, and to determine its association with clinicopathological data. This work was extended to investigate the effects of miR-633 overexpression on tumor cells in vitro. METHODS: Reverse transcription-quantitative PCR (RT-qPCR) was used to detect and compare the expression level of miR-633 in GC cells, as well as in GC and normal adjacent tissue samples. The clinical significance of miR-633 was also analyzed. MiR-633 lentivirus (LV-miR-633) and negative control lentivirus (LV-NC) were generated and used to transduce SGC-7901 and HGC-27 GC cells in order to analyze the effect of miR-633 on their phenotype. The effects of miR-633 overexpression on GC cell proliferation, apoptosis, migration and invasion were investigated. The target gene of miR-633 was predicted, then confirmed using a dual luciferase reporter gene assay, RT-qPCR and Western blotting. RESULTS: MiR-633 was significantly downregulated in GC cell lines, as well as in GC tissue compared with adjacent normal tissue. Moreover, miR-633 expression was associated with the tumor/node/metastasis (TNM) stage, invasion depth, Borrmann classification and lymph node metastasis (P<0.05). Compared with the LV-NC group, transduction with LV-miR-633 reduced the proliferation, the number of clones, the wound healing rate, the number of invading cells and the number of cells in the G1 phase of the cell cycle (P<0.01). LV-miR-633 also increased the apoptosis rate (P<0.01). The expression level of mitogen-activated protein kinase (MAPK) 1, high-mobility group box 3 (HMGB3), claudin 1 (CLDN1) and MAPK13 were downregulated in LV-miR-633-transduced cells (P<0.01). The dual luciferase reporter assay confirmed that the 3'-untranslated region of MAPK1 was the target site of miR-633 (P<0.01). CONCLUSION: MiR-633 acts as a tumor suppressor in GC, and its expression level is associated with TNM stage, invasion depth, Borrmann type and lymph node metastasis. Overexpression of miR-633 inhibits the proliferation and migration of GC cells and induces apoptosis and cell cycle arrest at the in G1 phase. In addition, miR-633 negatively regulates the expression of MAPK1, HMGB3, CLDN1 and MAPK13 and directly targets MAPK1.


Assuntos
MicroRNAs , Neoplasias Gástricas , Humanos , Neoplasias Gástricas/metabolismo , Metástase Linfática , Invasividade Neoplásica/genética , Regulação Neoplásica da Expressão Gênica , Proliferação de Células/genética , Movimento Celular/genética , Claudina-1/genética , Claudina-1/metabolismo , Apoptose/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Regiões não Traduzidas , Proteína Quinase 1 Ativada por Mitógeno/metabolismo
11.
Acta Pharmacol Sin ; 43(10): 2651-2665, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35217814

RESUMO

Canagliflozin is an antidiabetic medicine that inhibits sodium-glucose cotransporter 2 (SGLT2) in proximal tubules. Recently, it was reported to have several noncanonical effects other than SGLT2 inhibiting. However, the effects of canagliflozin on skeletal muscle regeneration remain largely unexplored. Thus, in vivo muscle contractile properties recovery in mice ischemic lower limbs following gliflozins treatment was evaluated. The C2C12 myoblast differentiation after gliflozins treatment was also assessed in vitro. As a result, both in vivo and in vitro data indicate that canagliflozin impairs intrinsic myogenic regeneration, thus hindering ischemic limb muscle contractile properties, fatigue resistance recovery, and tissue regeneration. Mitochondrial structure and activity are both disrupted by canagliflozin in myoblasts. Single-cell RNA sequencing of ischemic tibialis anterior reveals a decrease in leucyl-tRNA synthetase 2 (LARS2) in muscle stem cells attributable to canagliflozin. Further investigation explicates the noncanonical function of LARS2, which plays pivotal roles in regulating myoblast differentiation and muscle regeneration by affecting mitochondrial structure and activity. Enhanced expression of LARS2 restores the differentiation of canagliflozin-treated myoblasts, and accelerates ischemic skeletal muscle regeneration in canagliflozin-treated mice. Our data suggest that canagliflozin directly impairs ischemic skeletal muscle recovery in mice by downregulating LARS2 expression in muscle stem cells, and that LARS2 may be a promising therapeutic target for injured skeletal muscle regeneration.


Assuntos
Aminoacil-tRNA Sintetases , Inibidores do Transportador 2 de Sódio-Glicose , Aminoacil-tRNA Sintetases/metabolismo , Aminoacil-tRNA Sintetases/farmacologia , Animais , Canagliflozina/metabolismo , Canagliflozina/farmacologia , Canagliflozina/uso terapêutico , Diferenciação Celular , Glucose/metabolismo , Hipoglicemiantes/metabolismo , Hipoglicemiantes/farmacologia , Hipoglicemiantes/uso terapêutico , Isquemia/tratamento farmacológico , Isquemia/metabolismo , Camundongos , Músculo Esquelético/metabolismo , Sódio/metabolismo , Sódio/farmacologia , Transportador 2 de Glucose-Sódio/metabolismo , Transportador 2 de Glucose-Sódio/farmacologia , Inibidores do Transportador 2 de Sódio-Glicose/metabolismo , Inibidores do Transportador 2 de Sódio-Glicose/farmacologia
12.
Phys Chem Chem Phys ; 23(34): 18659-18668, 2021 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-34612403

RESUMO

Ionic liquids (ILs) have shown high catalytic activity in the degradation of poly(ethylene terephthalate) (PET), but the effects of the anions and cations, as well as the mechanism, remain ambiguous. Glycolysis is an important recycling method that converts waste PET into monomers through various chemical reactions. To reveal the role of ILs and the molecular mechanism of the glycolysis of PET, density functional theory (DFT) calculations have been carried out for the possible pathways for the generation of bis(hydroxyethyl)terephthalate (BHET) catalyzed by isolated anions/cations and ion pairs at different sites. The pathway with the lowest barrier for the glycolysis of PET is the cleavage of the C-O ester bond, which generates the BHET monomer. The synergistic effects of the cations and anions play a critical role in the glycolysis of PET. The cations mainly attack the carbonyl oxygen of PET to catalyze the reaction, and the anions mainly form strong H-bonds with PET and ethylene glycol (EG). In terms of the mechanism, the H-bonds render the hydroxyl oxygen of EG more electronegative. The cation coordinates the carbonyl oxygen of the ester, and the hydroxyl oxygen of EG attacks the ester group carbon of PET, with proton transfer to the carbonyl oxygen. A four-membered-ring transition state would be formed by PET, EG, and the IL catalyst, which regularly accelerates the degradation of PET. These results provide fundamental help in understanding the roles of ILs and the mechanism of IL-catalyzed PET degradation.

13.
J Environ Manage ; 296: 113267, 2021 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-34271351

RESUMO

This paper briefly reviews the development history of polyethylene terephthalate (PET) and the recycling of PET. As one of the most promising way to degrade PET into oligomers and monomers that can be used for the production of high-quality PET, catalytic glycolysis is highlighted in this review. The developments on metal salt, metal oxide and ionic solvent catalysts for glycolysis of PET are systematically summarized, besides, the proposed catalytic mechanisms of ionic liquids (ILs) and deep eutectic solvents (DESs) are presented. The metallic catalysts show high catalytic performance but causing serious environmental pollution and high waste treatment costs, thereby it is proposed that metal-free catalysts, especially ILs and DESs can be the "greener" alternatives to address the PET waste problem. Additionally, the studies related to the glycolysis kinetics are discussed in this review, showing the results that PET glycolysis process consists of heterogeneous and homogeneous depolymerization, and different models should be used to investigate different depolymerization stages in order to obtain a more realistic picture.


Assuntos
Líquidos Iônicos , Polietilenotereftalatos , Catálise , Glicólise , Reciclagem
14.
ACS Omega ; 6(18): 12351-12360, 2021 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-34056387

RESUMO

Bis(hydroxyethyl) terephthalate (BHET) obtained from waste poly(ethylene terephthalate) (PET) glycolysis often have undesirable colors, leading to an increased cost in the decoloration of the product and limiting the industrialization of chemical recycling. In this work, eight types of ion-exchange resins were used for BHET decoloration, and resin D201 showed an outstanding performance not only in the decoloration efficiency but also in the retention rate of the product. Under the optimal conditions, the removal rate of the colorant and the retention efficiency of BHET were over 99% and 95%, respectively. D201 showed outstanding reusability with five successive cycles, and the decolored BHET and its r-PET showed good chromaticity. Furthermore, the investigations of adsorption isotherms, kinetics, and thermodynamics have been conducted, which indicated that the decoloration process was a natural endothermic reaction. Adsorption interactions between the colorant and resin were extensively examined by various characterizations, revealing that electrostatic force, π-π interactions, and hydrogen bonding were the dominant adsorption mechanisms.

15.
Int J Biol Macromol ; 181: 45-50, 2021 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-33766588

RESUMO

In recent years, various biomacromolecule-based hydrogels have been extensively and deeply studied in the field of wearable electronics. However, the application of lignin-based hydrogels in flexible devices is still in its infancy. This is mainly due to the significant differences in physical and chemical properties of industrially extracted lignin. In order to seek the universal applicability of diversified lignin in the preparation of hydrogel electronics, we mainly paid attention to the natural physical and chemical properties of lignin to discuss feasible solutions for functional gel design. These properties include chemical reactivity, UV shielding, antibacterial, bio-degradability, anti-oxidation, etc. Finally, in view of lignin's unique properties and the demand for high-quality flexible electronics, some insights are proposed regarding the future research and development directions of lignin-based hydrogel electronics.


Assuntos
Hidrogéis/química , Lignina/química , Dispositivos Eletrônicos Vestíveis , Catálise , Nanopartículas/química , Oxirredução
16.
RSC Adv ; 11(43): 26876-26882, 2021 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-35480008

RESUMO

Currently, it is challenging to prepare uniform hollow-structured hydrogels with tailorable comprehensive properties. Herein, making full use of the different gelation routes of polyvinyl alcohol (PVA), we propose a distinctive two-stage method for preparing hollow-structured hydrogels, which is to arrange the microstructure of the hydrogel through segmented adjustment. The mechanical properties, macrostructure, and functions of the obtained hollow hydrogel can be easily designed and edited. Specifically, the mechanical properties of the hollow hydrogel can be improved from "soft" to "hard" by changing the preparation conditions. In addition, hollow hydrogels with diverse macrostructures can also be developed through different templates, such as tubes, gloves, and rings. More importantly, the hollow hydrogels can be endowed with conductive, anti-drying, anti-freezing, and photothermal-converting functions due to the great system compatibility of the gel precursor. Benefiting from the advantages of the hollow hydrogel, the conductive gel ring-based bioelectrodes and sensors were developed. Interestingly, the adaptive gel ring-based electronics can stably record the electrophysiological and strain signals of the human body without the help of adhesive tape. This study opens more opportunities for development and applications of other hydrogel-based hollow materials.

17.
Polymers (Basel) ; 12(12)2020 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-33266033

RESUMO

Adsorption of heavy metals from degraded of Polyethylene terephthalate (PET) products by strong cation exchange resin AmberliteIR-120 under optimized conditions toward the selectivity removal of metals are in the following order: Al3+ > Zn2+ > Mg2+ > Fe2+ > Ni2+. Therefore, kinetic and adsorption isotherm models were applied for fitting experimental data. Comparatively, adsorption isotherm study revealed that Langmuir isotherm model better fits adsorption on surface of resin over than the Freundlich model. In summary, AmberliteIR-120 strong acid cation exchange resin can be used as an efficient adsorbent for heavy metals removal from depolymerized products bis(2-hydroxyethyl) terephthalate.

18.
ChemSusChem ; 13(22): 5945-5953, 2020 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-32964672

RESUMO

Oxidation of lignin to value-added aromatics through selective C-C bond cleavage via metal-free and mild strategies is promising but challenging. It was discovered that the cations of ionic liquids (ILs) could effectively catalyze this kind of strong bond cleavage by forming multiple weak hydrogen bonds, enabling the reaction conducted in air at temperature lower than 373 K without metal-containing catalysts. The cation [CPMim]+ (1-propylronitrile-3-methylimidazolium) afforded the highest efficiency in C-C bond cleavage, in which high yields (>90 %) of oxidative products were achieved. [CPMim]+ could form three ipsilateral hydrogen bonds with the oxygen atom of C=O and ether bonds at both sides of the C-C bond. The weak bonds joint effects could promote adjacent C-H bond cleave to form free radicals and thereby catalyze the fragmentation of the strong C-C. This work opens up an eco-friendly and energy-efficient route for direct valorization of lignin by enhancing IL properties via tuning the cation.

19.
EBioMedicine ; 52: 102637, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31981975

RESUMO

BACKGROUND: Canagliflozin (CANA) administration increases the risk of lower limb amputation in the clinic. The present study aimed to investigate whether and how CANA interferes with the intracellular physiological processes of bone marrow derived mesenchymal stem cells (BM-MSCs) and its contribution to ischaemic lower limb. METHODS: The in vivo blood flow recovery in ischaemic lower limbs following CANA treatment was evaluated. The cellular function of BM-MSCs after CANA treatment were also assessed in vitro. In silico docking analysis and mutant substitution assay were conducted to confirm the interaction of CANA with glutamate dehydrogenase 1 (GDH1). FINDINGS: Following CANA treatment, attenuated angiogenesis and hampered blood flow recovery in the ischaemic region were detected in diabetic and non-diabetic mice, and inhibition of the proliferation and migration of BM-MSCs were also observed. CANA was involved in mitochondrial respiratory malfunction in BM-MSCs and the inhibition of ATP production, cytochrome c release and vessel endothelial growth factor A (VEGFA) secretion, which may contribute to reductions in the tissue repair capacity of BM-MSCs. The detrimental effects of CANA on MSCs result from the inhibition of GDH1 by CANA (evidenced by in silico docking analysis and H199A-GDH1/N392A-GDH1 mutant substitution). INTERPRETATION: Our work highlights that the inhibition of GDH1 activity by CANA interferes with the metabolic activity of the mitochondria, and this interference deteriorates the retention of and VEGFA secretion by MSCs. FUNDING: National Natural Science Foundation of China, Natural Science Foundation of Zhejiang Province and Wenzhou Science and Technology Bureau Foundation.


Assuntos
Canagliflozina/farmacologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/metabolismo , Comunicação Parácrina/efeitos dos fármacos , Traumatismo por Reperfusão/metabolismo , Inibidores do Transportador 2 de Sódio-Glicose/farmacologia , Animais , Apoptose/efeitos dos fármacos , Sítios de Ligação , Canagliflozina/química , Ciclo Celular/efeitos dos fármacos , Movimento Celular , Proliferação de Células/efeitos dos fármacos , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Glutamato Desidrogenase/química , Glutamato Desidrogenase/metabolismo , Humanos , Extremidade Inferior/irrigação sanguínea , Transplante de Células-Tronco Mesenquimais , Camundongos , Mitocôndrias Musculares/efeitos dos fármacos , Mitocôndrias Musculares/metabolismo , Mitocôndrias Musculares/ultraestrutura , Modelos Moleculares , Neovascularização Fisiológica/efeitos dos fármacos , Ligação Proteica , Traumatismo por Reperfusão/tratamento farmacológico , Traumatismo por Reperfusão/etiologia , Traumatismo por Reperfusão/patologia , Relação Estrutura-Atividade
20.
ChemSusChem ; 12(17): 4005-4013, 2019 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-31291505

RESUMO

The degradation of lignin into aromatic products is very important, but harsh conditions and metal-based catalysts are commonly needed to cleave the inert bonds. Herein, an efficient self-initiated radical photochemical degradation for lignin-derived aryl ethers through ionic liquids (ILs) induction is demonstrated. The C-C/C-O bonds can be cleaved efficiently through free-radical-mediated reaction in the binary-ILs system 1-propenyl-3-methylimidazolium bis[(trifluoromethyl)sulfonyl] imide [PMim][NTf2 ] and the Brønsted acid 1-propylsulfonic-3-methylimidazolium trifluoromethanesulfonate ([PrSO3 HMim][OTf]) under ambient conditions. [PMim][NTf2 ] initiates the reaction by promoting the cleavage of the Cß -H bond, and [PrSO3 HMim][OTf] catalyzes the subsequent C-O-C bond fragmentation. Furthermore, alkyl, hydroxyl, and peroxy radicals are detected, which suggests degradation based on a photochemical free-radical process. Additionally, alkali lignin could also be degraded in the IL system. This work sheds light on sustainable biomass utilization through a self-initiated radical photochemical strategy under metal-free and mild conditions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...