Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Am J Physiol Lung Cell Mol Physiol ; 316(5): L798-L809, 2019 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-30785344

RESUMO

Monocrotaline has been widely used to establish an animal model of pulmonary hypertension, most frequently in rats. An important feature of this model resides in the selectivity of monocrotaline injury toward the pulmonary vascular endothelium versus the systemic vasculature when administrated at standard dosage. The toxic metabolite of monocrotaline, monocrotaline pyrrole, is transported by erythrocytes. This study aimed to reveal whether partial pressure of oxygen of blood determined the binding and release of monocrotaline pyrrole from erythrocytes in rats with one subcutaneous injection of monocrotatline at the standard dosage of 60 mg/kg. Our experiments demonstrated that monocrotaline pyrrole bound to and released from erythrocytes at the physiological levels of partial pressure of oxygen in venous and arterial blood, respectively, and then aggregated on pulmonary artery endothelial cells. Monocrotaline pyrrole-induced damage of endothelial cells was also dependent on partial pressure of oxygen. In conclusion, our results demonstrate the importance of oxygen partial pressure on monocrotaline pyrrole binding to erythrocytes and on aggregation and injury of pulmonary endothelial cells. We suggest that these mechanisms contribute to pulmonary selectivity of this toxic injury model of pulmonary hypertension.


Assuntos
Células Endoteliais , Endotélio , Eritrócitos , Pulmão , Monocrotalina/análogos & derivados , Oxigênio/sangue , Animais , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Endotélio/lesões , Endotélio/metabolismo , Endotélio/patologia , Eritrócitos/metabolismo , Eritrócitos/patologia , Hipertensão Pulmonar/sangue , Hipertensão Pulmonar/induzido quimicamente , Hipertensão Pulmonar/patologia , Pulmão/metabolismo , Pulmão/patologia , Monocrotalina/farmacocinética , Monocrotalina/toxicidade , Ratos , Ratos Sprague-Dawley
3.
Arterioscler Thromb Vasc Biol ; 39(3): 482-495, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30626206

RESUMO

Objective- This study aims to determine whether and how the enriched metabolites of endothelial extracellular vesicles (eEVs) are critical for cigarette smoke-induced direct injury of endothelial cells and the development of pulmonary hypertension, rarely explored in contrast to long-investigated mechanisms secondary to chronic hypoxemia. Approach and Results- Metabonomic screen of eEVs from cigarette-smoking human subjects reveals prominent elevation of spermine-a polyamine metabolite with potent agonist activity for the extracellular CaSR (calcium-sensing receptor). CaSR inhibition with the negative allosteric modulator Calhex231 or CaSR knockdown attenuates cigarette smoke-induced pulmonary hypertension in rats without emphysematous changes in lungs or chronic hypoxemia. Cigarette smoke exposure increases the generation of spermine-positive eEVs and their spermine content. Immunocytochemical staining and immunogold electron microscopy recognize the spermine enrichment not only within the cytosol but also on the outer surface of eEV membrane. The repression of spermine synthesis, the inhibitory analog of spermine, N1-dansyl-spermine, Calhex231, or CaSR knockdown profoundly suppresses eEV exposure-mobilized cytosolic calcium signaling, pulmonary artery constriction, and smooth muscle cell proliferation. Confocal imaging of immunohistochemical staining demonstrates the migration of spermine-positive eEVs from endothelium into smooth muscle cells in pulmonary arteries of cigarette smoke-exposed rats. The repression of spermine synthesis or CaSR knockout results in attenuated development of pulmonary hypertension induced by an intravascular administration of eEVs. Conclusions- Cigarette smoke enhances eEV generation with spermine enrichment at their outer surface and cytosol, which activates CaSR and subsequently causes smooth muscle cell constriction and proliferation, therefore, directly leading to the development of pulmonary hypertension.


Assuntos
Células Endoteliais/metabolismo , Vesículas Extracelulares/fisiologia , Hipertensão Pulmonar/prevenção & controle , Receptores de Detecção de Cálcio/fisiologia , Espermina/fisiologia , Poluição por Fumaça de Tabaco/efeitos adversos , Fumar Tabaco/efeitos adversos , Animais , Benzamidas/farmacologia , Transporte Biológico , Cálcio/fisiologia , Sinalização do Cálcio/efeitos dos fármacos , Sinalização do Cálcio/fisiologia , Cicloexilaminas/farmacologia , Endotélio Vascular/metabolismo , Vesículas Extracelulares/química , Técnicas de Silenciamento de Genes , Hipertensão Pulmonar/etiologia , Hipertensão Pulmonar/fisiopatologia , Masculino , Miócitos de Músculo Liso/metabolismo , Artéria Pulmonar/efeitos dos fármacos , Artéria Pulmonar/metabolismo , Artéria Pulmonar/patologia , Interferência de RNA , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/farmacologia , Distribuição Aleatória , Ratos , Ratos Sprague-Dawley , Receptores de Detecção de Cálcio/antagonistas & inibidores , Receptores de Detecção de Cálcio/deficiência , Receptores de Detecção de Cálcio/genética , Espermina/biossíntese
4.
Adv Exp Med Biol ; 967: 385-398, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29047101

RESUMO

Oxidative and antioxidative system of cells and tissues maintains a balanced state under physiological conditions. A disruption in this balance of redox status has been associated with numerous pathological processes. Reactive oxygen species (ROS) as a major redox signaling generates in a spatiotemporally dependent manner. Subcellular organelles such as mitochondria, endoplasmic reticulum, plasma membrane and nuclei contribute to the production of ROS. In addition to downstream effects of ROS signaling regulated by average ROS changes in cytoplasm, whether subcelluar ROS mediate biological effect(s) has drawn greater attentions. With the advance in redox-sensitive probes targeted to different subcellular compartments, the investigation of subcellular ROS signaling and its associated cellular function has become feasible. In this review, we discuss the subcellular ROS signaling, with particular focus on mechanisms of subcellular ROS production and its downstream effects.


Assuntos
Organelas/metabolismo , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais , Animais , Núcleo Celular/metabolismo , Citoplasma/metabolismo , Retículo Endoplasmático/metabolismo , Humanos , Mitocôndrias/metabolismo , Oxirredução
5.
J Am Heart Assoc ; 6(4)2017 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-28330842

RESUMO

BACKGROUND: Monocrotaline has been widely used to establish an animal model of pulmonary hypertension. The molecular target underlying monocrotaline-induced pulmonary artery endothelial injury and pulmonary hypertension remains unknown. The extracellular calcium-sensing receptor (CaSR) and particularly its extracellular domain hold the potential structural basis for monocrotaline to bind. This study aimed to reveal whether monocrotaline induces pulmonary hypertension by targeting the CaSR. METHODS AND RESULTS: Nuclear magnetic resonance screening through WaterLOGSY (water ligand-observed gradient spectroscopy) and saturation transfer difference on protein preparation demonstrated the binding of monocrotaline to the CaSR. Immunocytochemical staining showed colocalization of monocrotaline with the CaSR in cultured pulmonary artery endothelial cells. Cellular thermal shift assay further verified the binding of monocrotaline to the CaSR in pulmonary arteries from monocrotaline-injected rats. Monocrotaline enhanced the assembly of CaSR, triggered the mobilization of calcium signaling, and damaged pulmonary artery endothelial cells in a CaSR-dependent manner. Finally, monocrotaline-induced pulmonary hypertension in rats was significantly attenuated or abolished by the inhibitor, the general or lung knockdown or knockout of CaSR. CONCLUSIONS: Monocrotaline aggregates on and activates the CaSR of pulmonary artery endothelial cells to trigger endothelial damage and, ultimately, induces pulmonary hypertension.


Assuntos
Células Endoteliais/efeitos dos fármacos , Hipertensão Pulmonar/induzido quimicamente , Monocrotalina/toxicidade , Artéria Pulmonar/efeitos dos fármacos , Receptores de Detecção de Cálcio/agonistas , Animais , Células Cultivadas , Modelos Animais de Doenças , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Predisposição Genética para Doença , Hipertensão Pulmonar/genética , Hipertensão Pulmonar/metabolismo , Hipertensão Pulmonar/patologia , Masculino , Monocrotalina/metabolismo , Ressonância Magnética Nuclear Biomolecular , Hormônio Paratireóideo/deficiência , Hormônio Paratireóideo/genética , Fenótipo , Ligação Proteica , Artéria Pulmonar/metabolismo , Artéria Pulmonar/patologia , Interferência de RNA , Ratos Sprague-Dawley , Ratos Transgênicos , Receptores de Detecção de Cálcio/deficiência , Receptores de Detecção de Cálcio/genética , Transdução de Sinais/efeitos dos fármacos , Transfecção
6.
Hypertension ; 69(5): 844-854, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28348014

RESUMO

Hypoxia-induced mitogenic factor (HIMF) is an inflammatory cytokine playing important role(s) in the development of hypoxic pulmonary hypertension. The molecular target mediating HIMF-stimulated downstream events remains unclear. The coimmunoprecipitation screen identified extracellular calcium-sensing receptor (CaSR) as the binding partner for HIMF in pulmonary artery smooth muscle cells. The yeast 2-hybrid assay then revealed the binding of HIMF to the intracellular, not the extracellular, domain of extracellular CaSR. The binding of HIMF enhanced the activity of extracellular CaSR and mediated hypoxia-evoked proliferation of pulmonary artery smooth cells and the development of pulmonary vascular remodeling and pulmonary hypertension, all of which was specifically attenuated by a synthesized membrane-permeable peptide flanking the core amino acids of the intracellular binding domain of extracellular CaSR. Thus, HIMF induces pulmonary hypertension as a nonclassical ligand of extracellular CaSR, and the binding motif of extracellular CaSR can be therapeutically exploitable.


Assuntos
Hipertensão Pulmonar/metabolismo , Hipóxia/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Músculo Liso Vascular/metabolismo , Receptores de Detecção de Cálcio/metabolismo , Animais , Proliferação de Células/fisiologia , Modelos Animais de Doenças , Hipertensão Pulmonar/etiologia , Hipóxia/complicações , Masculino , Miócitos de Músculo Liso/metabolismo , Ligação Proteica , Artéria Pulmonar/metabolismo , Ratos , Ratos Sprague-Dawley
7.
Oncotarget ; 7(31): 48925-48940, 2016 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-27419637

RESUMO

Mitochondria are essential for the onset of hypoxia-induced pulmonary vasoconstriction and pulmonary vascular-remodeling, two major aspects underlying the development of pulmonary hypertension, an incurable disease. However, hypoxia induces relaxation of systemic arteries such as femoral arteries and mitochondrial heterogeneity controls the distinct responses of pulmonary versus femoral artery smooth muscle cells to hypoxia in vitro. The aim of this study was to determine whether mitochondrial heterogeneity can be experimentally exploited in vivo for a potential treatment against pulmonary hypertension. The intact mitochondria were transplanted into Sprague-Dawley rat pulmonary artery smooth muscle cells in vivo via intravenous administration. The immune-florescent staining and ultrastructural examinations on pulmonary arteries confirmed the intracellular distribution of exogenous mitochondria and revealed the possible mitochondrial transfer from pulmonary artery endothelial cells into smooth muscle cells in part through their intercellular space and intercellular junctions. The transplantation of mitochondria derived from femoral artery smooth muscle cells inhibited acute hypoxia-triggered pulmonary vasoconstriction, attenuated chronic hypoxia-induced pulmonary vascular remodeling, and thus prevented the development of pulmonary hypertension or cured the established pulmonary hypertension in rats exposed to chronic hypoxia. Our findings suggest that mitochondrial transplantation possesses potential implications for exploring a novel therapeutic and preventive strategy against pulmonary hypertension.


Assuntos
Hipertensão Pulmonar/terapia , Hipóxia/terapia , Mitocôndrias/metabolismo , Mitocôndrias/transplante , Administração Intravenosa , Animais , Artéria Femoral/patologia , Hipertensão Pulmonar/fisiopatologia , Hipóxia/fisiopatologia , Músculo Liso Vascular/fisiopatologia , Miócitos de Músculo Liso/metabolismo , Artéria Pulmonar/patologia , Ratos , Ratos Sprague-Dawley , Vasoconstrição
8.
Theranostics ; 6(8): 1244-60, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27279915

RESUMO

Increased cholinergic activity has been highlighted in the pathogenesis of airway hyperresponsiveness, and alternations of mitochondrial structure and function appear to be involved in many lung diseases including airway hyperresponsiveness. It is crucial to clarify the cause-effect association between mitochondrial dysfunction and cholinergic hyperactivity in the pathogenesis of airway hyperresponsiveness. Male SD rats and cultured airway epithelial cells were exposed to cigarette smoke plus lipopolysaccharide administration; mitochondria isolated from airway epithelium were delivered into epithelial cells in vitro and in vivo. Both the cigarette smoke plus lipopolysaccharide-induced cholinergic hyperactivity in vitro and the airway hyperresponsiveness to acetylcholine in vivo were reversed by the transplantation of exogenous mitochondria. The rescue effects of exogenous mitochondria were imitated by the elimination of excessive reactive oxygen species or blockage of muscarinic M3 receptor, but inhibited by M receptor enhancer. Mitochondrial transplantation effectively attenuates cigarette smoke plus lipopolysaccharide-stimulated airway hyperresponsiveness through the inhibition of ROS-enhanced epithelial cholinergic hyperactivity.


Assuntos
Colinérgicos/metabolismo , Células Epiteliais/fisiologia , Mitocôndrias/metabolismo , Sistema Colinérgico não Neuronal/fisiologia , Hipersensibilidade Respiratória/terapia , Animais , Masculino , Ratos Sprague-Dawley , Espécies Reativas de Oxigênio/metabolismo , Receptor Muscarínico M3/antagonistas & inibidores
9.
Oncotarget ; 7(21): 31284-98, 2016 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-27121314

RESUMO

Hypoxia triggers pulmonary vasoconstriction, however induces relaxation of systemic arteries such as femoral arteries. Mitochondria are functionally and structurally heterogeneous between different cell types. The aim of this study was to reveal whether mitochondrial heterogeneity controls the distinct responses of pulmonary versus systemic artery smooth muscle cells to hypoxia. Intact mitochondria were transplanted into Sprague-Dawley rat pulmonary artery smooth muscle cells in culture and pulmonary arteries in vitro. Mitochondria retained functional after transplantation. The cross transplantation of mitochondria between pulmonary and femoral artery smooth muscle cells reversed acute hypoxia-induced alterations in cell membrane potential, [Ca2+]i signaling in smooth muscle cells and constriction or relaxation of arteries. Furthermore, the high or low amount of reactive oxygen species generation from mitochondria and their divergent (dis-)abilities in activating extracellular Ca2+-sensing receptor in smooth muscle cells were found to cause cell membrane potential depolarization, [Ca2+]i elevation and constriction of pulmonary arteries versus cell membrane potential hyperpolarization, [Ca2+]i decline and relaxation of femoral arteries in response to hypoxia, respectively. Our findings suggest that mitochondria necessarily determine the behaviors of vascular smooth muscle cells in response to hypoxia.


Assuntos
Mitocôndrias/transplante , Miócitos de Músculo Liso/fisiologia , Artéria Pulmonar/fisiologia , Vasoconstrição , Animais , Cálcio/metabolismo , Hipóxia Celular , Células Cultivadas , Artéria Femoral/citologia , Artéria Femoral/metabolismo , Artéria Femoral/fisiologia , Hipóxia , Potenciais da Membrana/fisiologia , Microscopia Eletrônica , Mitocôndrias/metabolismo , Mitocôndrias/ultraestrutura , Miócitos de Músculo Liso/metabolismo , Artéria Pulmonar/citologia , Artéria Pulmonar/metabolismo , Ratos Sprague-Dawley , Espécies Reativas de Oxigênio/metabolismo
10.
Antioxid Redox Signal ; 17(3): 471-84, 2012 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-22098336

RESUMO

AIMS: The initiation of hypoxic pulmonary vasoconstriction (HPV) involves an increase in cytosolic calcium ([Ca(2+)](i)) in pulmonary artery (PA) smooth muscle cells (PASMCs). Both the processes depend on extracellular Ca(2+). Extracellular Ca(2+) can be sensed by extracellular calcium-sensing receptor (CaSR). This study aims at determining whether CaSR is pivotal in the initiation of HPV. RESULTS: Experiments were performed in cultured PASMCs, isolated PAs, and rats including CaSR knockdown preparations. Both hypoxia and H(2)O(2) equivalent to the level achieved by hypoxia increased [Ca(2+)](i) in an extracellular Ca(2+)-dependent manner in PASMCs, and this was inhibited by CaSR knockdown or its negative allosteric modulator, Calhex231. Hypoxia-increased H(2)O(2) generation was diminished by mitochondria depletion. Mitochondria depletion abolished hypoxia-induced [Ca(2+)](i) increase (HICI), which was reversed by H(2)O(2) repletion. CaSR knockdown or Calhex231, however, prevented the reversible effect of H(2)O(2). HICI was abolished by catalase-polyethylene glycol (PEG-Catalase), not superoxide dismutase-polyethylene glycol (PEG-SOD) pretreatment, attenuated by ryanodine receptor3-knockdown or inhibition of store-operated Ca(2+) entry. HPV in vitro and in vivo was inhibited by Calhex231 and by CaSR knockdown. INNOVATION: A novel mechanism underlying HPV is revealed by the role of CaSR in orchestrating reactive oxygen species and [Ca(2+)](i) signaling. CONCLUSIONS: The activation of mitochondrial H(2)O(2)-sensitized CaSR by extracellular Ca(2+) mediates HICI in PASMCs and, thus, initiates HPV.


Assuntos
Miócitos de Músculo Liso/fisiologia , Artéria Pulmonar/fisiologia , Receptores de Detecção de Cálcio/metabolismo , Vasoconstrição , Animais , Benzamidas/farmacologia , Bloqueadores dos Canais de Cálcio/farmacologia , Sinalização do Cálcio , Hipóxia Celular , Células Cultivadas , Proteínas Quinases Dependentes de AMP Cíclico/antagonistas & inibidores , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Cicloexilaminas/farmacologia , Técnicas de Silenciamento de Genes , Peróxido de Hidrogênio/metabolismo , Técnicas In Vitro , Isoquinolinas/farmacologia , Compostos Macrocíclicos/farmacologia , Mitocôndrias/metabolismo , Miócitos de Músculo Liso/efeitos dos fármacos , Miócitos de Músculo Liso/metabolismo , Oxazóis/farmacologia , Artéria Pulmonar/citologia , Artéria Pulmonar/efeitos dos fármacos , Interferência de RNA , Ratos , Ratos Sprague-Dawley , Receptores de Detecção de Cálcio/antagonistas & inibidores , Receptores de Detecção de Cálcio/genética , Rianodina/farmacologia , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Sulfonamidas/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...