Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 106
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Molecules ; 29(6)2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38542845

RESUMO

The π-conjugated system and the steric configuration of hole transport materials (HTMs) could greatly affect their various properties and the corresponding perovskite solar cells' efficiencies. Here, a molecular engineering strategy of incorporating different amounts of p-methoxyaniline-substituted dibenzofurans as π bridge into HTMs was proposed to develop oligomer HTMs, named mDBF, bDBF, and tDBF. Upon extending the π-conjugation of HTMs, their HOMO energy levels were slightly deepened, significantly increasing the thermal stability and hole mobility. The incorporation of p-methoxyaniline bridges built one or two additional triphenylamine propeller structures, resulting in a denser film. Here, the tDBF-based n-i-p flexible perovskite solar cells createdchampion efficiency, giving a power conversion efficiency of 19.46%. And the simple synthesis and purification process of tDBF contributed to its low manufacturing cost in the laboratory. This work provided a reference for the development of low-cost and efficient HTMs.

2.
J Environ Manage ; 356: 120587, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38520848

RESUMO

It is challenging to differentiate bacteria residing in the same habitat by direct observation. This difficulty impedes the harvest, application and manipulation of functional bacteria in environmental engineering. In this study, we developed a novel method for rapid differentiation of living denitrifying bacteria based on derivative synchronous fluorescence spectroscopy, as exemplified by three heterotrophic nitrification-aerobic denitrification bacteria having the maximum nitrogen removal efficiencies greater than 90%. The intact bacteria and their living surroundings can be analyzed as an integrated target, which eliminates the need for the complex pre-processing of samples. Under the optimal synchronous scanning parameter (Δλ = 40 nm), each bacterium possesses a unique fluorescence spectral structure and the derivative synchronous fluorescence technique can significantly improve the spectral resolution compared to other conventional fluorescence methods, which enables the rapid differentiation of different bacteria through derivative synchronous fluorescence spectra as fast as 2 min per spectrum. Additionally, the derivative synchronous fluorescence technique can extract the spectral signals contributed by bacterial extracellular substances produced in the biological nitrogen removal process. Moreover, the results obtained from our method can reflect the real-time denitrification properties of bacteria in the biological nitrogen removal process of wastewater. All these merits highlight derivative synchronous fluorescence spectroscopy as a promising analytic method in the environmental field.


Assuntos
Desnitrificação , Nitrificação , Fluorescência , Aerobiose , Bactérias , Nitrogênio , Processos Heterotróficos , Nitritos
3.
Biotechnol Biofuels Bioprod ; 17(1): 16, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38291531

RESUMO

BACKGROUND: The hydrolysis and transphosphatidylation of phospholipase D (PLD) play important roles in the interconversion of phospholipids (PLs), which has been shown to profoundly impact lipid metabolism in plants. In this study, the effect of the PLD1 gene of Schizochytrium limacinum SR21 (S. limacinum SR21) on lipid metabolism was investigated. RESULTS: PLD1 knockout had little impact on cell growth and lipid production, but it significantly improved the percentage of polyunsaturated fatty acids in lipids, of which docosahexaenoic acid (DHA) content increased by 13.3% compared to the wild-type strain. Phospholipomics and real-time quantitative PCR analysis revealed the knockout of PLD1 reduced the interexchange and increased de novo synthesis of PLs, which altered the composition of PLs, accompanied by a final decrease in phosphatidylcholine (PC) and an increase in phosphatidylinositol, lysophosphatidylcholine, and phosphatidic acid levels. PLD1 knockout also increased DHA content in triglycerides (TAGs) and decreased it in PLs. CONCLUSIONS: These results indicate that PLD1 mainly performs the transphosphatidylation activity in S. limacinum SR21, and its knockout promotes the migration of DHA from PLs to TAGs, which is conducive to DHA accumulation and storage in TAGs via an acyl CoA-independent pathway. This study provides a novel approach for identifying the mechanism of DHA accumulation and metabolic regulation strategies for DHA production in S. limacinum SR21.

4.
Microbiol Spectr ; 12(1): e0238623, 2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38059626

RESUMO

IMPORTANCE: Currently, there is significant interest in Akkermansia muciniphila as a promising next-generation probiotic, making it a hot topic in scientific research. However, to achieve efficient industrial production, there is an urgent need to develop an in vitro culture method to achieve high biomass using low-cost carbon sources such as glucose. This study aims to explore the high-density fermentation strategy of A. muciniphila by optimizing the culture process. This study also employs techniques such as LC-MS and RNA-Seq to explain the possible regulatory mechanism of high-density cell growth and increased cell surface hydrophobicity facilitating cell colonization of the gut in vitro culture. Overall, this research sheds light on the potential of A. muciniphila as a probiotic and provides valuable insights for future industrial production.


Assuntos
Akkermansia , Carbono , Fermentação , Biomassa
5.
Front Endocrinol (Lausanne) ; 14: 1170957, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37547318

RESUMO

Background: Polycystic ovary syndrome (PCOS) is a complex, multifactor disorder in women of reproductive age worldwide. Although RNA editing may contribute to a variety of diseases, its role in PCOS remains unclear. Methods: A discovery RNA-Seq dataset was obtained from the NCBI Gene Expression Omnibus database of granulosa cells from women with PCOS and women without PCOS (controls). A validation RNA-Seq dataset downloaded from the European Nucleotide Archive Databank was used to validate differential editing. Transcriptome-wide investigation was conducted to analyze adenosine-to-inosine (A-to-I) RNA editing in PCOS and control samples. Results: A total of 17,395 high-confidence A-to-I RNA editing sites were identified in 3,644 genes in all GC samples. As for differential RNA editing, there were 545 differential RNA editing (DRE) sites in 259 genes with Nucleoporin 43 (NUP43), Retinoblastoma Binding Protein 4 (RBBP4), and leckstrin homology-like domain family A member 1 (PHLDA) showing the most significant three 3'-untranslated region (3'UTR) editing. Furthermore, we identified 20 DRE sites that demonstrated a significant correlation between editing levels and gene expression levels. Notably, MIR193b-365a Host Gene (MIR193BHG) and Hook Microtubule Tethering Protein 3 (HOOK3) exhibited significant differential expression between PCOS and controls. Functional enrichment analysis showed that these 259 differentially edited genes were mainly related to apoptosis and necroptosis pathways. RNA binding protein (RBP) analysis revealed that RNA Binding Motif Protein 45 (RBM45) was predicted as the most frequent RBP binding with RNA editing sites. Additionally, we observed a correlation between editing levels of differential editing sites and the expression level of the RNA editing enzyme Adenosine Deaminase RNA Specific B1 (ADARB1). Moreover, the existence of 55 common differentially edited genes and nine differential editing sites were confirmed in the validation dataset. Conclusion: Our current study highlighted the potential role of RNA editing in the pathophysiology of PCOS as an epigenetic process. These findings could provide valuable insights into the development of more targeted and effective treatment options for PCOS.


Assuntos
Síndrome do Ovário Policístico , RNA , Humanos , Feminino , RNA/metabolismo , Síndrome do Ovário Policístico/genética , Síndrome do Ovário Policístico/metabolismo , Edição de RNA , Perfilação da Expressão Gênica , Células da Granulosa/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo
6.
Enzyme Microb Technol ; 169: 110266, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37311283

RESUMO

Docosahexaenoic acid (DHA) enriched with phospholipids (PLs) (DHA-PLs) is a type of structured PL with good physicochemical and nutritional properties. Compared to PLs and DHA, DHA-PLs has higher bioavailability and structural stability and many nutritional benefits. To improve the enzymatic synthesis of DHA-PLs, this study investigated the preparation of phosphatidylcholine (PC) enriched with DHA (DHA-PC) via enzymatic transesterification of algal oil, which is rich in DHA-triglycerides, using immobilized Candida antarctica lipase B (CALB). The optimized reaction system incorporated 31.2% DHA into the acyl chain of PC and converted 43.6% PC to DHA-PC within 72 h at 50 °C, 1:8 PC: algal oil mass ratio, 25% enzyme load (based on total substrate mass), and 0.02 g/mL molecular sieve concentration. Consequently, the side reactions of PC hydrolysis were effectively suppressed and products with high PC content (74.8%) were produced. Molecular structure analysis showed that exogenous DHA was specifically incorporated into the sn-1 site of the PC by immobilized CALB. Furthermore, the evaluation of reusability with eight cycles showed that the immobilized CALB had good operational stability in the present reaction system. Collectively, this study demonstrated the applicability of immobilized CALB as a biocatalyst for synthesizing DHA-PC and provided an improved enzyme-catalyzed method for future DHA-PL synthesis.


Assuntos
Ácidos Docosa-Hexaenoicos , Fosfatidilcolinas , Fosfatidilcolinas/química , Enzimas Imobilizadas/metabolismo , Esterificação , Proteínas Fúngicas/metabolismo
7.
Sci Total Environ ; 857(Pt 1): 159321, 2023 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-36216065

RESUMO

Microbial reduction of ferrihydrite is prevalent in natural environments and plays an important role in reductive dissolution of Fe(III) minerals. With consistent release of anthropogenic graphene oxide (GO) into water bodies, new changes in the Fe(III)-reducing microorganisms/ferrihydrite binary system demand attention. Herein, we focused on the interaction of GO and bacterial cells in view of colloidal stability and interfacial forces, and on the consequences for microbial ferrihydrite reduction. The results showed that the addition of GO decreased the bioreduction efficiency of ferrihydrite down to 1/15 of the control. Meanwhile, the GO nanosheets were found not depositing on ferrihydrite but spontaneously aggregating with Shewanella spp., the representative dissimilatory Fe(III) reduction bacterial species. Using the extended Derjaguin-Landau-Verwey-Overbeek (XDLVO) theory and atomic force microscopy (AFM), the aggregation process can be interpreted in three steps according to the interaction energy calculation, namely, colloidal instability, reversible aggregation and irreversible aggregation. The motility of living cells seems the reason inducing the colloidal instability between GO and bacteria. While, the aggregation remains reversible even the secondary minimum achieved at the separation distance of 8.74-9.24 nm from XDLVO. When the separation distance <5.74-6.01 nm, the adhesion work predominates and causes irreversible aggregation, validated by AFM. Additionally, the probable ecological risks raised by this aggregation behavior for the imbalance of iron biogeochemical cycle were demonstrated.


Assuntos
Compostos Férricos , Ferro , Oxirredução
8.
Bioresour Bioprocess ; 10(1): 29, 2023 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38647925

RESUMO

Astaxanthin is an important ketocarotenoid widely used in industries. However, its application is limited because of its low yield. Sodium citrate (Na-citrate), one of the major carbon sources for microorganisms, can promote cell growth and product accumulation. The basidiomycetous red yeast Xanthophyllomyces dendrorhous was thus used to study the effect of Na-citrate on cell growth and astaxanthin synthesis. The highest biomass and astaxanthin yield (6.0 g/L and 22.5 mg/L) were obtained in shake-flask when 3 g/L Na-citrate was added at 24 h and were 1.8 and 2.0 times higher than those of the control group, respectively. Furthermore, metabolomics and real-time reverse transcription PCR (qRT-PCR) analysis were conducted to study the metabolic pathways of X. dendrorhous in response to Na-citrate. The qRT-PCR assay revealed that Na-citrate facilitated glucose consumption, promoted the metabolic flux from glycolysis, and regulated the tricarboxylic acid (TCA) cycle, providing more energy and substrates for the synthesis of astaxanthin. The gene analysis revealed that adding Na-citrate significantly upregulated the expression of six key genes (ICL, HMGS, crtE, crtYB, crtI, and crtS) involved in pathways related to astaxanthin biosynthesis. These results suggest that exogenous Na-citrate treatment is a potentially valuable strategy to stimulate astaxanthin production in X. dendrorhous.

9.
Pol J Microbiol ; 71(3): 341-351, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-36185026

RESUMO

A preliminary study was carried out to optimize the culture medium conditions for producing a novel microbial flocculant from the marine bacterial species Cobetia marina. The optimal glucose, yeast extract, and glutamate contents were 30, 10, and 2 g/l, respectively, while the optimal initial pH of the culture medium was determined to be 8. Following response surface optimization, the maximum bioflocculant production level of 1.36 g/l was achieved, which was 43.40% higher than the original culture medium. Within 5 min, a 20.0% (v/v) dosage of the yielded bioflocculant applied to algal cultures resulted in the highest flocculating efficiency of 93.9% with Spirulina platensis. The bioflocculant from C. marina MCCC1113 may have promising application potential for highly productive microalgae collection, according to the findings of this study.


Assuntos
Microalgas , Meios de Cultura/química , Fermentação , Floculação , Glucose , Glutamatos , Halomonadaceae
10.
Int J Biol Macromol ; 219: 1009-1020, 2022 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-35926673

RESUMO

Vancomycin (Van) remains one of the first-line drugs for the treatment of wound infections caused by methicillin-resistant Staphylococcus aureus (MRSA). However, the unsatisfactory bioavailability of vancomycin alone has greatly limited its potential health benefits. Here a responsive chitosan-based hydrogel was developed as the delivery system which not only would reduce this side effect but also increase efficacy of vancomycin. The hydrogel was prepared by grafting chitosan and cinnamaldehyde-based thioacetal (CTA) together with ginipin (G) as the crosslinker. Upon exposure to reactive oxygen species which were enriched in the bacterial wound, the hydrogel can locally degrade and sustainably release the loaded vancomycin near the lesion to compete with the troubling MRSA. Compared with vancomycin alone, the chitosan-based hydrogel loaded with vancomycin demonstrated accelerated acute wound healing. This achievement reveals that this multi-functional hydrogel may be a promising drug-delivery device for improving the efficacy of local antibiotic therapy.


Assuntos
Quitosana , Staphylococcus aureus Resistente à Meticilina , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Quitosana/farmacologia , Hidrogéis/farmacologia , Espécies Reativas de Oxigênio/farmacologia , Vancomicina/farmacologia , Vancomicina/uso terapêutico
11.
Appl Microbiol Biotechnol ; 106(7): 2415-2431, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35352151

RESUMO

Squalene, as an important terpenoid, is extensively used in the medicine and health care fields owing to its functions of anti-oxidation, blood lipid regulation and cancer prevention. The marine microalgae, Schizochytrium sp., which acts as an excellent strain with potential of high squalene production was selected as the starting strain. The overexpressed strain with sqs gene got the reduced biomass and lipid, while the squalene titer was increased by 79.6% ± 4.7% to 12.8 ± 0.2 mg/L. In order to further increase squalene production, the recombinant strain (HS strain) with sqs and hmgr gene co-overexpression was further constructed. The biomass and squalene titer of the HS strain were increased by 13.6% ± 1.2% and 88.8% ± 5.3%, respectively, which indicated the carbon flux of the mevalonate pathway was enhanced for squalene accumulation. Regarding the squalene synthesis is completely coupled with cell growth, fermentation strategy to prolong the logarithmic growth phase was conducive to improve squalene production. Under the condition of optimal composition and concentrated medium, the squalene titer of HS strain was 27.0 ± 1.3 mg/L, which was 2.0 times that of the basal medium condition (13.5 ± 0.4 mg/L). This study which combined the metabolic engineering and fermentation strategy provides a new strategy for squalene production in Schizochytrium sp. KEY POINTS: •The overexpression of sqs and hmgr genes promoted carbon metabolism for squalene. •The optimal and concentrated media can increase squalene yield.


Assuntos
Microalgas , Estramenópilas , Biomassa , Fermentação , Microalgas/metabolismo , Esqualeno/metabolismo , Estramenópilas/genética , Estramenópilas/metabolismo
12.
Microb Cell Fact ; 21(1): 41, 2022 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-35305639

RESUMO

BACKGROUND: Phospholipase D (PLD) has significant advantages in the food and medicine industries due to its unique transphosphatidylation. However, the high heterologous expression of PLD is limited by its cytotoxicity. The present study sought to develop an efficient and extracellular expression system of PLD in the non-pathogenic Brevibacillus choshinensis (B. choshinensis). RESULTS: The extracellular PLD was effectively expressed by the strong promoter (P2) under Mg2+ stress, with the highest activity of 10 U/mL. The inductively coupled plasma-mass spectrometry (ICP-MS) results elucidated that the over-expression of PLD by P2 promoter without Mg2+ stress induced the ionic homeostasis perturbation caused by the highly enhanced Ca2+ influx, leading to cell injury or death. Under Mg2+ stress, Ca2+ influx was significantly inhibited, and the strengths of P2 promoter and HWP gene expression were weakened. The study results revealed that the mechanism of Mg2+ induced cell growth protection and PLD expression might be related to the lowered strength of PLD expression by P2 promoter repression to meet with the secretion efficiency of B. choshinensis, and the redistribution of intracellular ions accompanied by decreased Ca2+ influx. CONCLUSIONS: The PLD production was highly improved under Mg2+ stress. By ICP-MS and qPCR analysis combined with other results, the mechanism of the efficient extracellular PLD expression under Mg2+ stress was demonstrated. The relatively low-speed PLD expression during cell growth alleviated cell growth inhibition and profoundly improved PLD production. These results provided a potential approach for the large-scale production of extracellular PLD and novel insights into PLD function.


Assuntos
Fosfolipase D , Streptomyces , Brevibacillus , Fosfolipase D/genética , Fosfolipase D/metabolismo , Regiões Promotoras Genéticas , Streptomyces/genética
13.
Bioresour Technol ; 348: 126816, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35134526

RESUMO

The Chlorella sorokiniana F31 is a promising lutein producer with high lutein content. Herein, different graphene/TiO2 nanoparticles (NPs) were designed and synthesized by hydrothermal method. Through the UV-vis diffuse reflectance spectra (DRS) analysis, the results showed that RGO-TiO2 NPs can effectively expand visible light absorption compared with TiO2 NPs. Subsequently, the effects of these NPs on light utilization and lutein accumulation of C. sorokiniana F31 were investigated, and the RGO-TiO2 NPs treatment exhibited the higher lutein production and content than that of TiO2 and control group. As the optimal RGO-TiO2 (0.5 wt%) NPs concentration of 50 mg/L and light intensity of 211 µmol/m2/s, the supreme lutein content (15.55 mg/g), production (77.2 mg/L) and productivity (12.87 mg/L/d) were achieved. The performances are higher than most of reported values in previous study, indicated that RGO-TiO2 (0.5 wt%) NPs treatment is a promised strategy to enhance microalgal growth and lutein accumulation.


Assuntos
Chlorella , Grafite , Nanopartículas , Luz , Luteína , Titânio
14.
Neural Netw ; 145: 300-307, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34785445

RESUMO

Clipping on learning rates in Adam leads to an effective stochastic algorithm-AdaBound. In spite of its effectiveness in practice, convergence analysis of AdaBound has not been fully explored, especially for non-convex optimization. To this end, we address the convergence of the last individual output of AdaBound for non-convex stochastic optimization problems, which is called individual convergence. We prove that, with the iteration of the AdaBound, the cost function converges to a finite value and the corresponding gradient converges to zero. The novelty of this proof is that the convergence conditions on the bound functions and momentum factors are much more relaxed than the existing results, especially when we remove the monotonicity and convergence of the bound functions, and only keep their boundedness. The momentum factors can be fixed to be constant, without the restriction of monotonically decreasing. This provides a new perspective on understanding the bound functions and momentum factors of AdaBound. At last, numerical experiments are provided to corroborate our theory and show that the convergence of AdaBound extends to more general bound functions.


Assuntos
Algoritmos , Aprendizagem
15.
J Hazard Mater ; 421: 126682, 2022 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-34388918

RESUMO

Biofilms are ubiquitous in aquatic environment. While so far, most of the ultraviolet (UV) disinfection studies focus on planktonic bacteria, and only limited attention has been given to UV irradiation on biofilms. To enrich this knowledge, the present paper reviews the up-to-date studies about applying UV to control biofilms in water and wastewater infrastructure. The development of UV light sources from the conventional mercury lamp to the light emitting diode (LED), and the resistance mechanisms of biofilms to UV are summarized, respectively. Then the feasibility to control biofilms with UV is discussed in terms of three technical routes: causing biofilm slough, inhibiting biofilm formation, and inactivating bacteria in the established biofilm. A comprehensive evaluation of the biofilm-targeted UV technologies currently used or potentially useful in water industry is provided as well, after comparative analyses on single/combined wavelengths, continuous/pulsed irradiation, and instant/chronic disinfection effects. UV LEDs are emerging as competitive light sources because of advantages such as possible selection of wavelengths, adjustable emitting mode and the designable configuration. They still, however, face challenges arising from the low wall plug efficiency and power output. At last, the implementation of the UV-based advanced oxidation processes in controlling biofilms on artificial surfaces is overviewed and their synergistic mechanisms are proposed, which further enlightens the prospective of UV in dealing with the biofilm issue in water infrastructure.


Assuntos
Raios Ultravioleta , Purificação da Água , Biofilmes , Desinfecção , Estudos Prospectivos , Águas Residuárias , Água
16.
Sensors (Basel) ; 21(20)2021 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-34695972

RESUMO

Graph Convolutional Networks (GCNs) have attracted a lot of attention and shown remarkable performance for action recognition in recent years. For improving the recognition accuracy, how to build graph structure adaptively, select key frames and extract discriminative features are the key problems of this kind of method. In this work, we propose a novel Adaptive Attention Memory Graph Convolutional Networks (AAM-GCN) for human action recognition using skeleton data. We adopt GCN to adaptively model the spatial configuration of skeletons and employ Gated Recurrent Unit (GRU) to construct an attention-enhanced memory for capturing the temporal feature. With the memory module, our model can not only remember what happened in the past but also employ the information in the future using multi-bidirectional GRU layers. Furthermore, in order to extract discriminative temporal features, the attention mechanism is also employed to select key frames from the skeleton sequence. Extensive experiments on Kinetics, NTU RGB+D and HDM05 datasets show that the proposed network achieves better performance than some state-of-the-art methods.


Assuntos
Redes Neurais de Computação , Esqueleto , Atividades Humanas , Humanos , Reconhecimento Psicológico
17.
Microb Cell Fact ; 20(1): 154, 2021 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-34348711

RESUMO

BACKGROUND: Indigo is a color molecule with a long history of being used as a textile dye. The conventional production methods are facing increasing economy, sustainability and environmental challenges. Therefore, developing a green synthesis method converting renewable feedstocks to indigo using engineered microbes is of great research and application interest. However, the efficiency of the indigo microbial biosynthesis is still low and needs to be improved by proper metabolic engineering strategies. RESULTS: In the present study, we adopted several metabolic engineering strategies to establish an efficient microbial biosynthesis system for converting renewable carbon substrates to indigo. First, a microbial co-culture was developed using two individually engineered E. coli strains to accommodate the indigo biosynthesis pathway, and the balancing of the overall pathway was achieved by manipulating the ratio of co-culture strains harboring different pathway modules. Through carbon source optimization and application of biosensor-assisted cell selection circuit, the indigo production was improved significantly. In addition, the global transcription machinery engineering (gTME) approach was utilized to establish a high-performance co-culture variant to further enhance the indigo production. Through the step-wise modification of the established system, the indigo bioproduction reached 104.3 mg/L, which was 11.4-fold higher than the parental indigo producing strain. CONCLUSION: This work combines modular co-culture engineering, biosensing, and gTME for addressing the challenges of the indigo biosynthesis, which has not been explored before. The findings of this study confirm the effectiveness of the developed approach and offer a new perspective for efficient indigo bioproduction. More broadly, this innovative approach has the potential for wider application in future studies of other valuable biochemicals' biosynthesis.


Assuntos
Vias Biossintéticas/fisiologia , Carbono/metabolismo , Escherichia coli/metabolismo , Índigo Carmim/metabolismo , Engenharia Metabólica/métodos , Técnicas Biossensoriais , Vias Biossintéticas/genética , Escherichia coli/genética , Índigo Carmim/análise
18.
J Oleo Sci ; 70(8): 1157-1164, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34349090

RESUMO

Liquid chicken oil is similar to the human lipid ratio, and is similar to the ideal fatty acids ratio suggested by Hayes, but its benefits remain unclear (Hwang, K.N.; Tung, H.P.; Shaw, H.M. J. Oleo. Sci. 69, 199-206 (2020)). Using soybean oil as a control, liquid chicken oil, coconut oil, lard oil, and olive oil, were tested on SD rats with the rodent diet 5001 plus 1% of high cholesterol addition and moderate 10 % of test oils. Positive results showed that a 10% liquid chicken oil diet reduced LDL and triglycerides, atherogenic index while increasing superoxide dismutase more than the soybean oil control (0.05 ≦ p < 0.10). Moreover, increment of hepatic endogenous glutathione peroxidase was found to be significantly different from the soybean oil control (p < 0.05). In this study, liquid chicken oil had more benefits than vegetable soybean dietary oil, with little evidence of hyperlipidemia. Comparison of the test oils with categories of fatty acids to the idea ratio SFA : MUFA : PUFA = 1 : 1.5 : 1, scored by its average weight implied a parallel trend of lipidemia and hepatic antioxidant activity to its score. It is difficult to use the test of rat to reflect human physiology, it remain 19% different of the fatty acids ratio from human ratio, however, this study reveal that the healthiness of a dietary oil seems relate well to its compatibility to the idea ratio or the host oil ratio, in this case, it is the human ratio.


Assuntos
Gorduras Insaturadas na Dieta/metabolismo , Animais , Peso Corporal/efeitos dos fármacos , Catalase/metabolismo , Galinhas , Cocos/química , Gorduras na Dieta/análise , Gorduras na Dieta/metabolismo , Gorduras Insaturadas na Dieta/análise , Glutationa Peroxidase/metabolismo , Fígado/efeitos dos fármacos , Fígado/enzimologia , Fígado/metabolismo , Masculino , Olea/química , Azeite de Oliva/análise , Azeite de Oliva/metabolismo , Ratos Sprague-Dawley , Óleo de Soja/análise , Óleo de Soja/metabolismo , Glycine max/química , Superóxido Dismutase/metabolismo
19.
iScience ; 24(6): 102576, 2021 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-34151229

RESUMO

Graphene oxide (GO) nanosheets with unique structure have received much attention in providing opportunity for high-performance membranes in separation. However, the rational design of ultrathin graphene membranes with controlled structures remains a big challenge. Here, we report a methodology to synthesize dual metal-coordinated ultrathin nanoporous graphene nanofilms by tailoring well-aligned nanocrystals as building blocks on heteroatom-doped GO nanosheets with tunable architectures. Manipulation of metal nitrate as bifunctional dopants realizes N-doping of graphene oxide and preferential growth of α-Mn2O3 nanocrystals. Generation of Mn-O-C bond during cross-linking greatly strengthens the stability of membranes for long-term steady operation. Meanwhile, because of spatial confinement effects and high binding energy, N-doped reduced GO nanosheets are desirable supports to construct numerous Mn-N-C bonds, thus generating artificial nanopores to significantly increase nanochannels for ultrafast mass transport. Moreover, the size-selective permeability of ultrathin nanoporous GO-based nanofilms can be optimized by managing the types of metal source for target coordination.

20.
Mar Drugs ; 18(9)2020 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-32948074

RESUMO

Marine microalgae are regarded as potential feedstock because of their multiple valuable compounds, including lipids, pigments, carbohydrates, and proteins. Some of these compounds exhibit attractive bioactivities, such as carotenoids, ω-3 polyunsaturated fatty acids, polysaccharides, and peptides. However, the production cost of bioactive compounds is quite high, due to the low contents in marine microalgae. Comprehensive utilization of marine microalgae for multiple compounds production instead of the sole product can be an efficient way to increase the economic feasibility of bioactive compounds production and improve the production efficiency. This paper discusses the metabolic network of marine microalgal compounds, and indicates their interaction in biosynthesis pathways. Furthermore, potential applications of co-production of multiple compounds under various cultivation conditions by shifting metabolic flux are discussed, and cultivation strategies based on environmental and/or nutrient conditions are proposed to improve the co-production. Moreover, biorefinery techniques for the integral use of microalgal biomass are summarized. These techniques include the co-extraction of multiple bioactive compounds from marine microalgae by conventional methods, super/subcritical fluids, and ionic liquids, as well as direct utilization and biochemical or thermochemical conversion of microalgal residues. Overall, this review sheds light on the potential of the comprehensive utilization of marine microalgae for improving bioeconomy in practical industrial application.


Assuntos
Produtos Biológicos/metabolismo , Biotecnologia , Microalgas/metabolismo , Produtos Biológicos/economia , Produtos Biológicos/farmacologia , Biomassa , Biotecnologia/economia , Análise Custo-Benefício , Metabolismo Energético
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...