Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Plant Physiol ; 287: 154043, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37392527

RESUMO

Lamiophlomis rotata is a medicinal plant in Qinghai-Tibet Plateau, in which flavonoid compounds are the major medicinal components. However, it remains unclear how flavonoid metabolism of L. rotata is influenced by soil properties and microbial community. In this study, we collected L. rotata seedlings and rhizosphere soils from five habitats ranging from 3750 to 4270 m of altitude and analyzed the effects of habitat conditions on flavonoid metabolism. The activities of peroxidase, cellulase, and urease were increased with altitude, while those of alkaline phosphatase, alkaline protease, and sucrase were decreased with altitude. Analysis of OTUs showed that the total number of bacterial genera was higher than that of fungal genera. The highest number of fungal genera was 132, and that of bacterial genera was 33 in Batang (BT) town in Yushu County at an altitude of 3880 m, suggesting that the fungal communities may play a critical role in L. rotata rhizosphere soils. Flavonoids in leaves and roots of L. rotata shared a similar pattern, with a trend of increasing levels with altitude. The highest flavonoid content measured, 12.94 mg/g in leaves and 11.43 mg/g in roots, was from Zaduo (ZD) County at an altitude of 4208 m. Soil peroxidases affected quercetin content in leaves of L. rotata, while the fungus Sebacina affected flavonoid content in leaves and roots of L. rotata. The expression of PAL, F3'H, FLS, and FNS genes showed a declining trend in leaves with altitude, while F3H showed an increasing trend in both leaves and roots. Overall, soil physicochemical properties and microbial community affect flavonoid metabolism in L. rotata in Qinghai-Tibet Plateau. The variations in flavonoid content and gene expression as well as their associations with soil factors revealed the complexity of the growth conditions and genetic makeup in L. rotata habitats of Qinghai-Tibet Plateau.


Assuntos
Microbiota , Solo , Tibet , Flavonoides , Expressão Gênica , Microbiologia do Solo
2.
Genes (Basel) ; 14(3)2023 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-36980847

RESUMO

Lamiophlomis rotata (Benth.) Kudo is a perennial and unique medicinal plant of the Qinghai-Tibet Plateau. It has the effects of diminishing inflammation, activating blood circulation, removing blood stasis, reducing swelling, and relieving pain. However, thus far, reliable reference gene identifications have not been reported in wild L. rotata. In this study, we identified suitable reference genes for the analysis of gene expression related to the medicinal compound synthesis in wild L. rotata subjected to five different-altitude habitats. Based on the RNA-Seq data of wild L. rotata from five different regions, the stability of 15 candidate internal reference genes was analyzed using geNorm, NormFinder, BestKeeper, and RefFinder. TFIIS, EF-1α, and CYP22 were the most suitable internal reference genes in the leaves of L. rotata from different regions, while OBP, TFIIS, and CYP22 were the optimal reference genes in the roots of L. rotata. The reference genes identified here would be very useful for gene expression studies with different tissues in L. rotata from different habitats.


Assuntos
Lamiaceae , Plantas Medicinais , Tibet , Lamiaceae/genética , Perfilação da Expressão Gênica , Dor , Plantas Medicinais/genética
3.
Adv Mater ; 35(6): e2208664, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36453570

RESUMO

Nonvolatile optoelectronic memory (NVOM) integrating the functions of optical sensing and long-term memory can efficiently process and store a large amount of visual scene information, which has become the core requirement of multiple intelligence scenarios. However, realizing NVOM with vis-infrared broadband response is still challenging. Herein, the room temperature vis-infrared broadband NVOM based on few-layer MoS2 /2D Ruddlesden-Popper perovskite (2D-RPP) van der Waals heterojunction is realized. It is found that the 2D-RPP converts the initial n-type MoS2 into p-type and facilitates hole transfer between them. Furthermore, the 2D-RPP rich in interband states serves as an effective electron trapping layer as well as broadband photoresponsive layer. As a result, the dielectric-free MoS2 /2D-RPP heterojunction enables the charge to transfer quickly under external field, which enables a large memory window (104 V), fast write speed of 20 µs, and optical programmable characteristics from visible light (405 nm) to telecommunication wavelengths (i.e., 1550 nm) at room temperature. Trapezoidal optical programming can produce up to 100 recognizable states (>6 bits), with operating energy as low as 5.1 pJ per optical program. These results provide a route to realize fast, low power, multi-bit optoelectronic memory from visible to the infrared wavelength.

4.
J Plant Physiol ; 279: 153856, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36375401

RESUMO

Lycium chinense is an important medicinal plant in the northwest of China. Flavonoids are the major pharmacological components of L. chinense fruits. However, flavonoid metabolism during fruit development of L. chinense remains to be studied. Here, we analyzed the change of flavonoid contents, enzyme activity, and gene expression during fruit development of L. chinense. We found that flavonoids, anthocyanins, and catechins are the most important components of L. chinense fruits. Flavonoid content was increased with fruit development and was high at the late developmental stage. PAL, CHS, and F3H enzymes played a significant role in flavonoid accumulation in fruits. Transcriptomic analysis showed that anthocyanin pathway, flavonol pathway, flavonoid biosynthesis, and phenylpropanoid synthesis pathway were the major pathways involved in flavonoid metabolism in L. chinense. Gene expression analysis indicated that PAL1 and CHS2 genes were critical for flavonoid metabolism in L. chinense fruits. These discoveries help us understand the dynamic changes in flavonoids during fruit development and enhance the use of L. chinense fruits.


Assuntos
Lycium , Lycium/genética , Frutas/genética , Antocianinas , Reprodução , Flavonoides , Regulação da Expressão Gênica de Plantas
5.
Adv Mater ; 34(51): e2207106, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36193774

RESUMO

With the development of perovskite photodetectors, integrating photodetectors into array image sensors is the next target to pursue. The major obstacle to integrating perovskite photodiodes for dynamic imaging is the optoelectrical crosstalk among the pixels. Herein, a perovskite photodiode-blocking diode (PIN-BD) crossbar array with pixel-wise rectifying property by the vapor deposition method is presented. The PIN-BD shows a large rectification ratio of 3.3 × 102 under illumination, suppressing electrical crosstalk to as small as 8.0% in the imaging array. The fast response time of 72.8 ns allows real-time image acquisition by over 25 frames per second. The imaging sensor exhibits excellent imaging capability with a large linear dynamic range of 112 dB with 4096 gray levels and weak light sensitivity under 1.2 lux.

6.
Materials (Basel) ; 15(17)2022 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-36079239

RESUMO

Two-dimensional van der Waals crystals (2D vdW) are recognized as one of the potential materials to solve the physical limits caused by size scaling. Here, vdW metal oxide MoO3 is applied with the gate dielectric in a 2D field-effect transistor (FET). Due to its high dielectric constant and the good response of MoS2 to visible light, we obtained a field effect transistor for photodetection. In general, the device exhibits a threshold voltage near 0 V, Ion/Ioff ratio of 105, electron mobility about 85 cm2 V-1 s-1 and a good response to visible light, the responsivity is near 5 A/W at low laser power, which shows that MoO3 is a potential material as gate dielectric.

7.
J Colloid Interface Sci ; 599: 497-506, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33964695

RESUMO

CuO supported catalyst with high valence rhenium doping were specially studied for photoelectrocatalytic reduction of CO2 to small molecular alcohols, which were synthesized by nitrate thermal decomposition method on anatase TiO2 nanotube arrays (TiO2-NTs). Photoelectrochemical measurements indicate that the high valence rhenium doping helps in improving the catalytic activity and selectivity of CuO supported catalysts. For the case of 6 wt% Re-doped CuO/TiO2-NTs calcined at 723 K, the principal products are methanol and ethanol with yield up to 19.9 µmol and 7.5 µmol after 5 h photoelectrocatalysis at external potential of -0.4 V under simulated solar illumination. In contrast, the products catalyzed by undoped CuO/TiO2-NTs are only methanol and formaldehyde. These results indicate that the high valence rhenium doping will promote the alcoholization process and benefit the CC coupling, leading to the selective conversion of CO2 to ethanol. Furthermore, under suitable external potential (-0.5 V) the CO2 conversion product is almost entirely composed of ethanol.

8.
RSC Adv ; 11(35): 21805-21812, 2021 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-35478787

RESUMO

CuO-based electrodes possess vast potential in the field of CO2 electrochemical reduction. Meantime, TiO2 supports show the advantages of being non-toxic, low-cost and having high chemical stability, which render it an ideal electrocatalytic support with CuO. However, different morphologies and structures of TiO2 supports can be obtained through various methods, leading to the discrepant electrocatalytic properties of CuO/TiO2. In this paper, three supports, named dense TiO2, TiO2 nanotube and TiO2 nanofiber, were applied to synthesize CuO/TiO2 electrodes by thermal decomposition, and the performances of the electrocatalysts were studied. Results show that the main product of the three electrocatalysts was ethanol, but the electrochemical efficiency and reaction characteristics are obviously different. The liquid product of CuO/Dense TiO2 is pure ethanol, however, the current efficiency is rather low owing to the higher resistance of the TiO2 film. CuO/TiO2 nanotube shows high conductivity and ethanol can be synthesized at low overpotential with high current efficiency, but the gas products cannot be restricted. CuO/TiO2 nanofiber has a larger specific surface area and more active sites, which is beneficial for CO2 reduction, and the hydrogen evolution reaction can be evidently restricted. The yield of ethanol reaches up to 6.4 µmol cm-2 at -1.1 V (vs. SCE) after 5 h.

9.
J Colloid Interface Sci ; 568: 198-206, 2020 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-32088450

RESUMO

Herein, we report a simple approach to synthesize CuFeO2/TNNTs photocathodes composed of high-temperature resistance n-type Nb-doped TiO2 nanotube arrays (TNNTs) and p-type CuFeO2 for CO2 reduction. TNNTs were prepared by anodic oxidation on TiNb alloy sheets and CuFeO2/TNNTs were then prepared by coating precursor liquid onto TNNTs followed by heat treatment in argon atmosphere. The microstructures of CuFeO2/TNNTs and TNNTs before and after heat treatment were investigated by SEM and TEM. The phase compositions of CuFeO2/TNNTs were studied by XRD and XPS, and the light absorption performance were tested by UV-vis diffuse reflectance spectrum. Results show that TNNTs exhibit a regular nanotube arrays structure and this structure is well remained after the calcination at 650 °C. In addition, TNNTs show similar semiconductor properties to n-type TiO2, which enables them to be integrated with p-type CuFeO2 to obtain composite photocathodes with a p-n junction. The synthesized CuFeO2/TNNTs photocathode is well crystallized because no other crystalline iron or copper compounds are included in the prepared photocathode. Furthermore, the photocathode shows high light absorption and fast carrier transport due to the appropriate band gap and p-n junction. As a result, high photoelectrocatalytic CO2 reduction performance with high selectivity to ethanol is obtained on this photocathode.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...