Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Plant Mol Biol ; 87(1-2): 157-67, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25477078

RESUMO

Transcription factors that act as positive regulators of gibberellin (GA) biosynthetic genes in plants are not well understood. A nuclear-localized basic leucine zipper transcription factor, ZmGRF, was isolated from maize. The core DNA sequence motif recognized for binding by ZmGRF was CCANNTGGC. ZmGRF overexpression in transgenic Arabidopsis plants promoted flowering, stem elongation, and cell expansion. Chromatin immunoprecipitation assays revealed that ZmGRF bound directly to the cis-element CCANNTGGC in the promoter of the Arabidopsis ent-kaurene oxidase (AtKO1) gene and promoted AtKO1 expression. GA4 content increased by 372-567% in transgenic Arabidopsis plants overexpressing ZmGRF compared to wild-type control plants. The GIBBERELLIN-INSENSITIVE DWARF1 gene, which encodes a GA receptor, was also upregulated and the growth-repressing DELLA protein gene GA INSENSITIVE was downregulated. Our results showed ZmGRF functioned through the GA-signaling pathway.


Assuntos
Arabidopsis/crescimento & desenvolvimento , Flores/crescimento & desenvolvimento , Giberelinas/metabolismo , Proteínas de Plantas/fisiologia , Zea mays/metabolismo , Sequência de Aminoácidos , Dados de Sequência Molecular , Proteínas de Plantas/química , Homologia de Sequência de Aminoácidos
2.
Gene ; 555(2): 178-85, 2015 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-25445264

RESUMO

The miR169 miRNA family is highly conserved in plants. Its members regulate the expression of genes encoding the universal transcription factor subunit NUCLEAR FACTOR-Y subunit A (NF-YA) via transcript cleavage. NF-YA regulates gene expression by binding the CCAAT box sequence in target promoters. The miR169/NF-YA module plays a critical role during plant development and in plant responses to abiotic stress. We characterized the secondary structures of maize pre-miR169 miRNAs and predicted their potential gene targets. Coexpression of zma-miR169 and ZmNF-YA in Nicotiana benthamiana demonstrated that mutations in or deletion of target sites abolished regulation by zma-miR169. Maize seedlings were subjected to short-term (0-48h) and long-term (15days) drought, abscisic acid (ABA), or salt stress. Long-term exposure to PEG (drought stress) or NaCl (salt stress) repressed seedling growth. We investigated the expression patterns of zma-miR169s and their target ZmNF-YA genes in maize leaves and found diverse changes in expression in response to the three stress treatments. The expression of most zma-miR169 genes was downregulated by PEG and upregulated by ABA. In response to salt stress, zma-miR169 genes were upregulated initially and subsequently downregulated. Most ZmNF-YA genes were upregulated during the short term and downregulated by 15days in response to the three stress treatments.


Assuntos
Fator de Ligação a CCAAT/metabolismo , MicroRNAs/genética , Proteínas de Plantas/metabolismo , Estresse Fisiológico , Zea mays/genética , Sequência de Bases , Fator de Ligação a CCAAT/genética , Biologia Computacional , Deleção de Genes , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Dados de Sequência Molecular , Família Multigênica , Mutação , Filogenia , Folhas de Planta/metabolismo , Proteínas de Plantas/genética , Regiões Promotoras Genéticas , Estrutura Secundária de Proteína , Plântula/metabolismo , Nicotiana
3.
PLoS One ; 9(3): e91369, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24633051

RESUMO

Previous studies have identified miR169/NF-YA modules are important regulators of plant development and stress responses. Currently, reported genome sequence data offers an opportunity for global characterization of miR169 and NF-YA genes, which may provide insights into the molecular mechanisms of the miR169/NF-YA modules in maize. In our study, fourteen NF-YA transcription factors with conserved domains were identified based on maize genome loci. The miR169 gene family has 18 members that generate 10 mature products, and 8 of these mature miR169 members could target 7 of 14 ZmNF-YA genes in maize. The seven ZmNF-YA proteins were localized to the nucleus while lacked transcriptional activity. We investigated the expression patterns of the zma-miR169 members and their targeted ZmNF-YA genes in maize roots treated by drought stress (polyethylene glycol, PEG), hormone stress (abscisic acid, ABA), and salt stress (NaCl). The zma-miR169 family members were downregulated in short term (0 ∼ 48 h) and generally upregulated over the long term (15 days) in response to the three abiotic stress conditions. Most of the targeted ZmNF-YA genes exhibited a reverse correlation with zma-miR169 gene expression over both the short term and long term. Maize root elongation was promoted by PEG and ABA but repressed by NaCl over the long term. Apparently, ZmNF-YA14 expression perfectly matched the zma-miR169 expression and corresponded to root growth reversely.


Assuntos
Regulação da Expressão Gênica de Plantas , Genes de Plantas , MicroRNAs/genética , Família Multigênica , Raízes de Plantas/genética , Estresse Fisiológico/genética , Zea mays/genética , Sequência de Aminoácidos , Sequência de Bases , Perfilação da Expressão Gênica , MicroRNAs/química , Modelos Biológicos , Dados de Sequência Molecular , Fenótipo , Filogenia , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Transporte Proteico , Interferência de RNA , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Alinhamento de Sequência , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Zea mays/crescimento & desenvolvimento , Zea mays/metabolismo
4.
J Appl Phycol ; 23(2): 265-269, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21544188

RESUMO

This paper outlines an investigation on current situation of Spirulina (Arthrospira) industry in Inner Mongolia, an internal region of China with temperate continental climate. More than 20 Spirulina plants have been established in Inner Mongolia since 2001, most of which are located at Wulan Town in the Ordos Plateau. By the end of 2009, the total annual production of Spirulina in the Ordos Plateau surpassed 700 t (dw), which account for ca. 80% of the total productivity of Inner Mongolia, and ca. 20% of China. Besides abundant solar radiation and enough freshwater favorable for Spirulina production, the three technical strategies contribute to the prosperity and success of Spirulina industry in the region: (1) reducing the cost or investment by overall advantages of rich local natural resources with low cost for Spirulina production, such as alkaline lakes, coal, electricity, and sandy land; (2) controlling the culture temperature and to avoid contamination by building plastic greenhouses on raceway ponds, (3) reducing investment by simplifying the construction of the ponds and the greenhouses. As the result, the growth period of Spirulina has been prolonged from about 120 to about 165 days, the cost of Spirulina has decreased by 25-30%, and the quality of products has been enhanced substantially. Inner Mongolia is expected to become the largest base for Spirulina production not only in China, but also in the world in the near future.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA