Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 16(10)2023 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-37241293

RESUMO

Heterostructures based on layered materials are considered next-generation photocatalysts due to their unique mechanical, physical, and chemical properties. In this work, we conducted a systematic first-principles study on the structure, stability, and electronic properties of a 2D monolayer WSe2/Cs4AgBiBr8 heterostructure. We found that the heterostructure is not only a type-II heterostructure with a high optical absorption coefficient, but also shows better optoelectronic properties, changing from an indirect bandgap semiconductor (about 1.70 eV) to a direct bandgap semiconductor (about 1.23 eV) by introducing an appropriate Se vacancy. Moreover, we investigated the stability of the heterostructure with Se atomic vacancy in different positions and found that the heterostructure was more stable when the Se vacancy is near the vertical direction of the upper Br atoms from the 2D double perovskite layer. The insightful understanding of WSe2/Cs4AgBiBr8 heterostructure and the defect engineering will offer useful strategies to design superior layered photodetectors.

2.
J Phys Chem Lett ; 14(1): 302-309, 2023 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-36602229

RESUMO

Sn-Ge mixed perovskites have been proposed as promising lead-free candidates in the photovoltaics (PV) field. In this work, we discovered a stable P1 phase Sn-Ge mixed structure (CsSn0.5Ge0.5I3) with an appropriate band gap value of 1.19 eV, which manifests its unique structural stability and physics properties. The thermodynamic stability of this mixed structure under different growth conditions and all possible native defects are depicted in detail. The formation energies and dominant native point defects indicate that P1 phase CsSn0.5Ge0.5I3 exhibits unipolar self-doping behavior (p-type conductivity) and good defect tolerance while the growth condition changes. In addition, the calculation of light absorption confirmed that the P1 phase has a higher light absorption coefficient than that of MAPbI3 in the visible light range, showing excellent light absorption. Our work not only provides theoretical guidance for unraveling the unusual structural stability of Sn-Ge mixed perovskites, but also offers a useful scheme to modulate the stability and optoelectronic properties of Ge-based perovskites through alloy engineering.

3.
Adv Mater ; 35(6): e2208664, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36453570

RESUMO

Nonvolatile optoelectronic memory (NVOM) integrating the functions of optical sensing and long-term memory can efficiently process and store a large amount of visual scene information, which has become the core requirement of multiple intelligence scenarios. However, realizing NVOM with vis-infrared broadband response is still challenging. Herein, the room temperature vis-infrared broadband NVOM based on few-layer MoS2 /2D Ruddlesden-Popper perovskite (2D-RPP) van der Waals heterojunction is realized. It is found that the 2D-RPP converts the initial n-type MoS2 into p-type and facilitates hole transfer between them. Furthermore, the 2D-RPP rich in interband states serves as an effective electron trapping layer as well as broadband photoresponsive layer. As a result, the dielectric-free MoS2 /2D-RPP heterojunction enables the charge to transfer quickly under external field, which enables a large memory window (104 V), fast write speed of 20 µs, and optical programmable characteristics from visible light (405 nm) to telecommunication wavelengths (i.e., 1550 nm) at room temperature. Trapezoidal optical programming can produce up to 100 recognizable states (>6 bits), with operating energy as low as 5.1 pJ per optical program. These results provide a route to realize fast, low power, multi-bit optoelectronic memory from visible to the infrared wavelength.

4.
Adv Sci (Weinh) ; 9(29): e2203640, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36057995

RESUMO

Perovskite solar cells (PSCs) via two-step sequential method have received great attention in recent years due to their high reproducibility and low processing costs. However, the relatively high trap-state density and poor charge carrier extraction efficiency pose challenges. Herein, highly efficient and stable PSCs via a two-step sequential method are fabricated using organic-inorganic (OI) complexes as multifunctional interlayers. In addition to reduce the under-coordinated Pb2+ ions related trap states by forming interactions with the functional groups, the complexes interlayer tends to form dipole moment which can enhance the built-in electric field, thus facilitating charge carrier extraction. Consequently, with rational molecular design, the resulting devices with a vertical dipole moment that parallels with the built-in electric field yield a champion efficiency of 23.55% with negligible hysteresis. More importantly, the hydrophobicity of the (OI) complexes contributes to an excellent ambient stability of the resulting device with 91% of initial efficiency maintained after 3000 h storage.

5.
Materials (Basel) ; 15(9)2022 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-35591711

RESUMO

The optoelectronic properties of layered α-MoO3 are greatly limited due to its wide band gap and low carrier concentration. The insertion of hydrogen (H) can effectively tune the band structure and carrier concentration of MoO3. Herein, first-principles calculations were performed to unravel the physical mechanism of a H-doped α-MoO3 system. We found that the modulation of the electronic structure of H-doped MoO3 depends on the doping concentration and position of the H atoms. It was found that the band gap decreases at 8% doping concentration due to the strong coupling between Mo-4d and O-2p orbits when H atoms are inserted into the interlayer. More interestingly, the band gap decreases to an extreme due to the Mo-4d orbit when all the H atoms are inserted into the intralayer only, which has a remarkable effect on light absorption. Our research provides a comprehensive theoretical discussion on the mechanism of H-doped α-MoO3 from the doping positions and doping concentrations, and offers useful strategies on doping modulation of the photoelectric properties of layered transition metal oxides.

6.
Ying Yong Sheng Tai Xue Bao ; 25(2): 318-24, 2014 Feb.
Artigo em Chinês | MEDLINE | ID: mdl-24830228

RESUMO

Fine roots in the Castanopsis carlesii plantation forest (MZ), the secondary forest of C. carlesii through natural regeneration with anthropogenic promotion (AR), and the secondary forest of C. carlesii through natural regeneration (NR) in Sanming City, Fujian Province, were estimated by soil core method to determine the influence of tree species diversity on biomass, vertical distribution and morphological characteristics of fine roots. The results showed that fine root biomass for the 0-80 cm soil layer in the MZ, AR and NR were (182.46 +/- 10.81), (242.73 +/- 17.85) and (353.11 +/- 16.46) g x m(-2), respectively, showing an increased tendency with increasing tree species diversity. In the three forests, fine root biomass was significantly influenced by soil depth, and fine roots at the 0-10 cm soil layer accounted for more than 35% of the total fine root biomass. However, the interaction of stand type and soil depth on fine-root distribution was not significant, indicating no influence of tree species diversity on spatial niche segregation in fine roots. Root surface area density and root length density were the highest in NR and lowest in the MZ. Specific root length was in the order of AR > MZ > NR, while specific root surface area was in the order of NR > MZ > AR. There was no significant interaction of stand type and soil depth on specific root length and specific root surface area. Fine root morphological plasticity at the stand level had no significant response to tree species diversity.


Assuntos
Fagaceae/crescimento & desenvolvimento , Florestas , Raízes de Plantas/crescimento & desenvolvimento , Solo , Biomassa , China , Árvores/classificação , Árvores/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...