Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Hazard Mater ; 470: 134151, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38554517

RESUMO

Ground-level ozone ranks sixth among common air pollutants. It worsens lung diseases like asthma, emphysema, and chronic bronchitis. Despite recent attention from researchers, the link between exhaled breath and ozone-induced injury remains poorly understood. This study aimed to identify novel exhaled biomarkers in ozone-exposed mice using ultra-sensitive photoinduced associative ionization time-of-flight mass spectrometry and machine learning. Distinct ion peaks for acetonitrile (m/z 42, 60, and 78), butyronitrile (m/z 70, 88, and 106), and hydrogen sulfide (m/z 35) were detected. Integration of tissue characteristics, oxidative stress-related mRNA expression, and exhaled breath condensate free-radical analysis enabled a comprehensive exploration of the relationship between ozone-induced biological responses and potential biomarkers. Under similar exposure levels, C57BL/6 mice exhibited pulmonary injury characterized by significant inflammation, oxidative stress, and cardiac damage. Notably, C57BL/6 mice showed free radical signals, indicating a distinct susceptibility profile. Immunodeficient non-obese diabetic Prkdc-/-/Il2rg-/- (NPI) mice exhibited minimal biological responses to pulmonary injury, with little impact on the heart. These findings suggest a divergence in ozone-induced damage pathways in the two mouse types, leading to alterations in exhaled biomarkers. Integrating biomarker discovery with comprehensive biopathological analysis forms a robust foundation for targeted interventions to manage health risks posed by ozone exposure.


Assuntos
Biomarcadores , Testes Respiratórios , Aprendizado de Máquina , Camundongos Endogâmicos C57BL , Ozônio , Animais , Ozônio/toxicidade , Biomarcadores/metabolismo , Biomarcadores/análise , Masculino , Estresse Oxidativo/efeitos dos fármacos , Poluentes Atmosféricos/toxicidade , Poluentes Atmosféricos/análise , Camundongos , Espectrometria de Massas , Expiração , Lesão Pulmonar/induzido quimicamente , Lesão Pulmonar/metabolismo
2.
Ecotoxicol Environ Saf ; 273: 116162, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38458067

RESUMO

Airborne fine particulate matter (PM2.5) can cause pulmonary inflammation and even fibrosis, however, the underlying molecular mechanisms of the pathogenesis of PM2.5 exposure have not been fully appreciated. In the present study, we explored the dynamics of glycolysis and modification of histone lactylation in macrophages induced by PM2.5-exposure in both in vivo and in vitro models. Male C57BL/6 J mice were anesthetized and administrated with PM2.5 by intratracheal instillation once every other day for 4 weeks. Mouse RAW264.7 macrophages and alveolar epithelial MLE-12 cells were treated with PM2.5 for 24 h. We found that PM2.5 significantly increased lactate dehydrogenase (LDH) activities and lactate contents, and up-regulated the mRNA expression of key glycolytic enzymes in the lungs and bronchoalveolar lavage fluids of mice. Moreover, PM2.5 increased the levels of histone lactylation in both PM2.5-exposed lungs and RAW264.7 cells. The pro-fibrotic cytokines secreted from PM2.5-treated RAW264.7 cells triggered epithelial-mesenchymal transition (EMT) in MLE-12 cells through activating transforming growth factor-ß (TGF-ß)/Smad2/3 and VEGFA/ERK pathways. In contrast, LDHA inhibitor (GNE-140) pretreatment effectively alleviated PM2.5-induced pulmonary inflammation and fibrosis via inhibiting glycolysis and subsequent modification of histone lactylation in mice. Thus, our findings suggest that PM2.5-induced glycolysis and subsequent modification of histone lactylation play critical role in the PM2.5-associated pulmonary fibrosis.


Assuntos
Pneumonia , Fibrose Pulmonar , Masculino , Camundongos , Animais , Fibrose Pulmonar/metabolismo , Histonas/metabolismo , Camundongos Endogâmicos C57BL , Pneumonia/metabolismo , Material Particulado/metabolismo , Macrófagos , Glicólise
3.
Environ Pollut ; 345: 123473, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38301820

RESUMO

Emerging evidence has demonstrated the association between microplastics (MPs) with a diameter of <5 mm and the risk of intestinal diseases. However, the molecular mechanisms contributing to MP-induced intestinal barrier dysfunction have not been fully appreciated. In this study, C57BL/6 J mice were exposed to polystyrene microplastics (PS-MPs, 0.2, 1 or 5 µm) at 1 mg/kg body weight daily by oral gavage for 28 days. We found that PS-MPs exposure induced oxidative stress and inflammatory cell infiltration in mice colon, leading to an increased expression of pro-inflammatory cytokine. Moreover, there were an increase in intestinal permeability and decrease in mucus secretion, accompanied by downregulation of tight junction (TJ)-related zonula occluden-1 (ZO-1), occluding (OCLN) and claudin-1 (CLDN-1) in mice colon. Especially, 5 µm PS-MPs (PS5)-induced intestinal epithelial TJ barrier damage was more severe than 0.2 µm PS-MPs (PS0.2) and 1 µm PS-MPs (PS1). In vitro experiments indicated that PS5-induced oxidative stress upregulated the expression of nuclear factor kappa B (NF-κB), nucleotide-binding domain and leucine-rich repeat protein 3 (NLRP3) inflammasome, and myosin light chain kinase (MLCK). Meanwhile, pre-treatment with the antioxidant NAC, NLRP3 inhibitor MCC950 and MLCK inhibitor ML-7 considerably reduced PS5-triggered reactive oxygen species (ROS) production and inflammatory response, inhibited the activation of the NF-κB/NLRP3/MLCK pathway, and upregulated ZO-1, OCLN and CLDN-1 expression in Caco-2 cells. Taken together, our study demonstrated that PS-MPs cause intestinal barrier dysfunction through the ROS-dependent NF-κB/NLRP3/IL-1ß/MLCK pathway.


Assuntos
Enteropatias , NF-kappa B , Humanos , Animais , Camundongos , NF-kappa B/metabolismo , Plásticos/metabolismo , Células CACO-2 , Microplásticos/metabolismo , Poliestirenos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Espécies Reativas de Oxigênio , Camundongos Endogâmicos C57BL , Estresse Oxidativo
4.
Redox Biol ; 70: 103080, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38354630

RESUMO

Growing evidence suggests that dimethylarginine dimethylaminohydrolase 1 (DDAH1), a crucial enzyme for the degradation of asymmetric dimethylarginine (ADMA), is closely related to oxidative stress during the development of multiple diseases. However, the underlying mechanism by which DDAH1 regulates the intracellular redox state remains unclear. In the present study, DDAH1 was shown to interact with peroxiredoxin 1 (PRDX1) and sulfiredoxin 1 (SRXN1), and these interactions could be enhanced by oxidative stress. In HepG2 cells, H2O2-induced downregulation of DDAH1 and accumulation of ADMA were attenuated by overexpression of PRDX1 or SRXN1 but exacerbated by knockdown of PRDX1 or SRXN1. On the other hand, DDAH1 also maintained the expression of PRDX1 and SRXN1 in H2O2-treated cells. Furthermore, global knockout of Ddah1 (Ddah1-/-) or liver-specific knockout of Ddah1 (Ddah1HKO) exacerbated, while overexpression of DDAH1 alleviated liver dysfunction, hepatic oxidative stress and downregulation of PRDX1 and SRXN1 in CCl4-treated mice. Overexpression of liver PRDX1 improved liver function, attenuated hepatic oxidative stress and DDAH1 downregulation, and diminished the differences between wild type and Ddah1-/- mice after CCl4 treatment. Collectively, our results suggest that the regulatory effect of DDAH1 on cellular redox homeostasis under stress conditions is due, at least in part, to the interaction with PRDX1 and SRXN1.


Assuntos
Amidoidrolases , Oxirredução , Oxirredutases atuantes sobre Doadores de Grupo Enxofre , Peroxirredoxinas , Animais , Camundongos , Homeostase , Peróxido de Hidrogênio , Estresse Oxidativo , Oxirredutases atuantes sobre Doadores de Grupo Enxofre/genética , Oxirredutases atuantes sobre Doadores de Grupo Enxofre/metabolismo , Peroxirredoxinas/genética , Peroxirredoxinas/metabolismo , Amidoidrolases/metabolismo
5.
Cell Rep ; 43(1): 113658, 2024 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-38175755

RESUMO

Poor skin wound healing, which is common in patients with diabetes, is related to imbalanced macrophage polarization. Here, we find that nutrition sensor GCN2 (general control nonderepressible 2) and its downstream are significantly upregulated in human skin wound tissue and mouse skin wound macrophages, but skin wound-related GCN2 expression and activity are significantly downregulated by diabetes and hyperglycemia. Using wound healing models of GCN2-deleted mice, bone marrow chimeric mice, and monocyte-transferred mice, we show that GCN2 deletion in macrophages significantly delays skin wound healing compared with wild-type mice by altering M1 and M2a/M2c polarization. Mechanistically, GCN2 inhibits M1 macrophages via OXPHOS-ROS-NF-κB pathway and promotes tissue-repairing M2a/M2c macrophages through eukaryotic translation initiation factor 2 (eIF2α)-hypoxia-inducible factor 1α (HIF1α)-glycolysis pathway. Importantly, local supplementation of GCN2 activator halofuginone efficiently restores wound healing in diabetic mice with re-balancing M1 and M2a/2c polarization. Thus, the decreased macrophage GCN2 expression and activity contribute to poor wound healing in diabetes and targeting GCN2 improves wound healing in diabetes.


Assuntos
Diabetes Mellitus Experimental , Animais , Humanos , Camundongos , Diabetes Mellitus Experimental/metabolismo , Regulação para Baixo , Macrófagos/metabolismo , Pele , Cicatrização
6.
Antioxidants (Basel) ; 12(9)2023 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-37760057

RESUMO

Nitric oxide (NO) is an important biological signaling molecule affecting muscle regeneration. The activity of NO synthase (NOS) is regulated by dimethylarginine dimethylaminohydrolase 1 (DDAH1) through degradation of the endogenous NOS inhibitor asymmetric dimethylarginine (ADMA). To investigate the role of DDAH1 in muscle injury and regeneration, muscle-specific Ddah1-knockout mice (Ddah1MKO) and their littermates (Ddah1f/f) were used to examine the progress of cardiotoxin (CTX)-induced muscle injury and subsequent muscle regeneration. After CTX injection, Ddah1MKO mice developed more severe muscle injury than Ddah1f/f mice. Muscle regeneration was also delayed in Ddah1MKO mice on Day 5 after CTX injection. These phenomena were associated with higher serum ADMA and LDH levels as well as a great induction of inflammatory response, oxidative stress and cell apoptosis in the gastrocnemius (GA) muscle of Ddah1MKO mice. In the GA muscle of CTX-treated mice, Ddah1 deficiency decreased the protein expression of M-cadherin, myogenin, Bcl-2, peroxiredoxin 3 (PRDX3) and PRDX5, and increased the protein expression of MyoD, TNFα, Il-6, iNOS and Bax. In summary, our data suggest that DDAH1 exerts a protective role in muscle injury and regeneration.

7.
Acta Pharm Sin B ; 13(8): 3352-3364, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37655336

RESUMO

Dimethylarginine dimethylaminohydrolase 1 (DDAH1) is an important regulator of plasma asymmetric dimethylarginine (ADMA) levels, which are associated with insulin resistance in patients with nonalcoholic fatty liver disease (NAFLD). To elucidate the role of hepatic DDAH1 in the pathogenesis of NAFLD, we used hepatocyte-specific Ddah1-knockout mice (Ddah1HKO) to examine the progress of high-fat diet (HFD)-induced NAFLD. Compared to diet-matched flox/flox littermates (Ddah1f/f), Ddah1HKO mice exhibited higher serum ADMA levels. After HFD feeding for 16 weeks, Ddah1HKO mice developed more severe liver steatosis and worse insulin resistance than Ddah1f/f mice. On the contrary, overexpression of DDAH1 attenuated the NAFLD-like phenotype in HFD-fed mice and ob/ob mice. RNA-seq analysis showed that DDAH1 affects NF-κB signaling, lipid metabolic processes, and immune system processes in fatty livers. Furthermore, DDAH1 reduces S100 calcium-binding protein A11 (S100A11) possibly via NF-κB, JNK and oxidative stress-dependent manner in fatty livers. Knockdown of hepatic S100a11 by an AAV8-shS100a11 vector alleviated hepatic steatosis and insulin resistance in HFD-fed Ddah1HKO mice. In summary, our results suggested that the liver DDAH1/S100A11 axis has a marked effect on liver lipid metabolism in obese mice. Strategies to increase liver DDAH1 activity or decrease S100A11 expression could be a valuable approach for NAFLD therapy.

8.
Cell Mol Immunol ; 19(12): 1333-1346, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36348079

RESUMO

Tissue-resident macrophages are derived from different precursor cells and display different phenotypes. Reconstitution of the tissue-resident macrophages of inflamed or damaged tissues in adults can be achieved by bone marrow-derived monocytes/macrophages. Using lysozyme (Lysm)-GFP-reporter mice, we found that alveolar macrophages (AMs), Kupffer cells, red pulp macrophages (RpMacs), and kidney-resident macrophages were Lysm-GFP-, whereas all monocytes in the fetal liver, adult bone marrow, and blood were Lysm-GFP+. Donor-derived Lysm-GFP+ resident macrophages gradually became Lysm-GFP- in recipients and developed gene expression profiles characteristic of tissue-resident macrophages. Thus, Lysm may be used to distinguish newly formed and long-term surviving tissue-resident macrophages that were derived from bone marrow precursor cells in adult mice under pathological conditions. Furthermore, we found that Irf4 might be essential for resident macrophage differentiation in all tissues, while cytokine and receptor pathways, mTOR signaling pathways, and fatty acid metabolic processes predominantly regulated the differentiation of RpMacs, Kupffer cells, and kidney macrophages, respectively. Deficiencies in ST2, mechanistic target of rapamycin (mTOR) and fatty acid-binding protein 5 (FABP5) differentially impaired the differentiation of tissue-resident macrophages from bone marrow-derived monocytes/macrophages in the lungs, liver, and kidneys. These results indicate that a combination of shared and unique signaling pathways coordinately shape tissue-resident macrophage differentiation in various tissues.


Assuntos
Macrófagos , Muramidase , Camundongos , Animais , Muramidase/metabolismo , Macrófagos/metabolismo , Monócitos , Células de Kupffer , Serina-Treonina Quinases TOR/metabolismo
9.
Part Fibre Toxicol ; 19(1): 64, 2022 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-36242005

RESUMO

BACKGROUND: Airborne fine particulate matter with aerodynamic diameter ≤ 2.5 µm (PM2.5) pollution is associated with the prevalence of respiratory diseases, including asthma, bronchitis and chronic obstructive pulmonary disease. In patients with those diseases, circulating asymmetric dimethylarginine (ADMA) levels are increased, which contributes to airway nitric oxide deficiency, oxidative stress and inflammation. Overexpression of dimethylarginine dimethylaminohydrolase 1 (DDAH1), an enzyme degrading ADMA, exerts protective effects in animal models. However, the impact of DDAH1/ADMA on PM2.5-induced lung injury has not been investigated. METHODS: Ddah1-/- and DDAH1-transgenic mice, as well as their respective wild-type (WT) littermates, were exposed to either filtered air or airborne PM2.5 (mean daily concentration ~ 50 µg/m3) for 6 months through a whole-body exposure system. Mice were also acutely exposed to 10 mg/kg PM2.5 and/or exogenous ADMA (2 mg/kg) via intratracheal instillation every other day for 2 weeks. Inflammatory response, oxidative stress and related gene expressions in the lungs were examined. In addition, RAW264.7 cells were exposed to PM2.5 and/or ADMA and the changes in intracellular oxidative stress and inflammatory response were determined. RESULTS: Ddah1-/- mice developed more severe lung injury than WT mice after long-term PM2.5 exposure, which was associated with greater induction of pulmonary oxidative stress and inflammation. In the lungs of PM2.5-exposed mice, Ddah1 deficiency increased protein expression of p-p65, iNOS and Bax, and decreased protein expression of Bcl-2, SOD1 and peroxiredoxin 4. Conversely, DDAH1 overexpression significantly alleviated lung injury, attenuated pulmonary oxidative stress and inflammation, and exerted opposite effects on those proteins in PM2.5-exposed mice. In addition, exogenous ADMA administration could mimic the effect of Ddah1 deficiency on PM2.5-induced lung injury, oxidative stress and inflammation. In PM2.5-exposed macrophages, ADMA aggravated the inflammatory response and oxidative stress in an iNOS-dependent manner. CONCLUSION: Our data revealed that DDAH1 has a marked protective effect on long-term PM2.5 exposure-induced lung injury.


Assuntos
Lesão Pulmonar , Óxido Nítrico , Amidoidrolases , Animais , Inflamação/induzido quimicamente , Lesão Pulmonar/induzido quimicamente , Lesão Pulmonar/genética , Lesão Pulmonar/prevenção & controle , Camundongos , Camundongos Transgênicos , Óxido Nítrico/genética , Óxido Nítrico/metabolismo , Estresse Oxidativo , Material Particulado/toxicidade , Peroxirredoxinas/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Transdução de Sinais , Superóxido Dismutase-1/metabolismo , Proteína X Associada a bcl-2/metabolismo
10.
Antioxidants (Basel) ; 11(8)2022 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-36009303

RESUMO

It is well recognized that there is a strong and complex association between nonalcoholic fatty liver disease (NAFLD) and type 2 diabetes (T2D). We previously demonstrated that genetic knockout or pharmacological inhibition of general control nondepressible kinase 2 (GCN2), a well-known amino acid sensor, alleviated hepatic steatosis and insulin resistance in obese mice. However, whether GCN2 affects the development of T2D remains unclear. After a high-fat diet (HFD) plus low-dose streptozotocin (STZ) treatments, Gcn2-/- mice developed less hyperglycemia, insulin resistance, hepatic steatosis, and oxidative stress than wild-type (WT) mice. Inhibition of GCN2 by intraperitoneal injection of 3 mg/kg GCN2iB (a specific inhibitor of GCN2) every other day for 6 weeks also ameliorated hyperglycemia, insulin resistance, hepatic steatosis, and oxidative stress in HFD/STZ- and leptin receptor deletion (db/db)-induced T2D mice. Moreover, depletion of hepatic GCN2 in db/db mice by tail vein injection of an AAV8-shGcn2 vector resulted in similar improvement in those metabolic disorders. The protective mechanism of GCN2 inhibition in T2D mice was associated with regulation of the glucose metabolic pathway, repression of lipogenesis genes, and activation of the Nrf2 pathway. Together, our data provide evidence that strategies to inhibit hepatic GCN2 activity may be novel approaches for T2D therapy.

11.
Antioxidants (Basel) ; 11(7)2022 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-35883870

RESUMO

Diabetic cardiomyopathy (DCM) is a kind of heart disease that affects diabetic patients and is one of the primary causes of death. We previously demonstrated that deletion of the general control nonderepressible 2 (GCN2) kinase ameliorates cardiac dysfunction in diabetic mice. The aim of this study was to investigate the protective effect of GCN2iB, a GCN2 inhibitor, in type 2 diabetic (T2D) mice induced by a high-fat diet (HFD) plus low-dose streptozotocin (STZ) treatments or deletion of the leptin receptor (db/db). GCN2iB (3 mg/kg/every other day) treatment for 6 weeks resulted in significant decreases in fasting blood glucose levels and body weight and increases in the left ventricular ejection fraction. GCN2iB treatment also attenuated myocardial fibrosis, lipid accumulation and oxidative stress in the hearts of T2D mice, which was associated with decreases in lipid metabolism-related genes and increases in antioxidative genes. Untargeted metabolomics and RNA sequencing analysis revealed that GCN2iB profoundly affected myocardial metabolomic profiles and gene expression profiles. In particular, GCN2iB increased myocardial phosphocreatine and taurine levels and upregulated genes involved in oxidative phosphorylation. In conclusion, the data provide evidence that GCN2iB effectively protects against cardiac dysfunction in T2D mice. Our findings suggest that GCN2iB might be a novel drug candidate for DCM therapy.

12.
Antioxidants (Basel) ; 11(6)2022 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-35739990

RESUMO

Non-alcoholic fatty liver disease (NAFLD) is increasingly prevalent and represents a growing challenge in terms of prevention and treatment. The aim of this study is to investigate the protective effects and the underlying mechanisms of vanadium(IV)-chlorodipicolinate ([VIVO(dipic-Cl)(H2O)2, VOdipic-Cl]) in a mouse model of NAFLD induced by a high-fat diet (HFD). VOdipic-Cl (10 mg/kg/day body weight) treatment for 4 weeks significantly controlled body weight gain, and effectively reduced the increase in serum and hepatic triglyceride (TG) and total cholesterol (TC) levels, mitigated pathological injury, decreased malondialdehyde (MDA) level, and inhibited endoplasmic reticulum (ER) stress and inflammatory response in the livers of C57BL/6 obese mice. Moreover, RNA-sequencing analysis revealed distinct transcriptional profiles with differentially expressed genes (DEGs) in livers. We found that VOdipic-Cl effectively down-regulated genes related to lipid synthesis and up-regulated genes related to fatty acid transport and lipolysis, and down-regulated the expression of genes related to ER stress and immune response in the livers of obese mice. In conclusion, VOdipic-Cl effectively prevented hepatic steatosis by controlling body weight, mitigating oxidative stress, and regulating the expression of genes related to lipid metabolism, ER stress and immune response, which provides new insights into the molecular mechanism of the protective effect of VOdipic-Cl against hepatic steatosis.

13.
Antioxidants (Basel) ; 11(5)2022 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-35624743

RESUMO

In many developed countries, acetaminophen (APAP) overdose-induced acute liver injury is a significant therapeutic problem. Dimethylarginine dimethylaminohydrolase 1 (DDAH1) is a critical enzyme for asymmetric dimethylarginine (ADMA) metabolism. Growing evidence suggests that liver dysfunction is associated with increased plasma ADMA levels and reduced hepatic DDAH1 activity/expression. The purpose of this study was to investigate the involvement of DDAH1 in APAP-mediated hepatotoxicity using Ddah1-/- and DDAH1 transgenic mice. After APAP challenge, Ddah1-/- mice developed more severe liver injury than wild type (WT) mice, which was associated with a greater induction of fibrosis, oxidative stress, inflammation, cell apoptosis and phosphorylation of JNK. In contrast, overexpression of DDAH1 attenuated APAP-induced liver injury. RNA-seq analysis showed that DDAH1 affects xenobiotic metabolism and glutathione metabolism pathways in APAP-treated livers. Furthermore, we found that DDAH1 knockdown aggravated APAP-induced cell death, oxidative stress, phosphorylation of JNK and p65, upregulation of CYP2E1 and downregulation of GSTA1 in HepG2 cells. Collectively, our data suggested that DDAH1 has a marked protective effect against APAP-induced liver oxidative stress, inflammation and injury. Strategies to increase hepatic DDAH1 expression/activity may be novel approaches for drug-induced acute liver injury therapy.

14.
Talanta ; 239: 123120, 2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-34864537

RESUMO

Pulmonary fibrosis (PF) is a common but fatal disease that threatens human health worldwide. Developing effective diagnostic methods is of great importance for the early detection of PF in patients. In this study, bleomycin (BLM) was used in mice to mimic idiopathic pulmonary fibrosis (IPF). The exhaled breath of BLM-induced PF, PF plus DDAH1 overexpression, and healthy control mice were analyzed in real-time using a newly developed associative ionization time-of-flight mass spectrometry method (AI-TOFMS), which is uniquely sensitive, especially to oxygenated volatile organic compounds (VOCs). Multivariate data analyses and discriminant modeling analyses revealed that four exhaled compounds, i.e., acrolein, ethanol, nitric oxide, and ammonia, had a strong correlation with PF symptoms. An Orthogonal Partial Least Square Discriminant Analysis (OPLS-DA) score plot showed an excellent separation between these three groups. The area under the receiver operating characteristic (ROC) curve for these four compounds distinguished PF mice from healthy controls at 0.989. In addition, the degrees of acute inflammation and fibrosis were assessed with Hematoxylin and Eosin (H&E) staining and Masson's Trichrome staining. Finally, combined with pathological characteristics and mRNA expression levels, the formation of the above-mentioned volatile compounds was explored. The obtained experimental results indicated that these four breath compounds, acrolein, ethanol, nitric oxide, and ammonia, were potential exhaled biomarkers for pulmonary fibrosis.


Assuntos
Bleomicina , Fibrose Pulmonar Idiopática , Animais , Biomarcadores , Testes Respiratórios , Expiração , Humanos , Fibrose Pulmonar Idiopática/induzido quimicamente , Fibrose Pulmonar Idiopática/diagnóstico , Espectrometria de Massas , Camundongos
15.
Redox Biol ; 49: 102224, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34954499

RESUMO

The development of nonalcoholic fatty liver disease (NAFLD) is associated with increased reactive oxygen species (ROS) production. Previous observations on the contradictory roles of general control nonderepressible 2 (GCN2) in regulating the hepatic redox state under different nutritional conditions prompted an investigation of the underlying mechanism by which GCN2 regulates ROS homeostasis. In the present study, GCN2 was found to interact with NRF2 and decrease NRF2 expression in a KEAP1-dependent manner. Activation of GCN2 by halofuginone treatment or leucine deprivation decreased NRF2 expression in hepatocytes by increasing GSK-3ß activity. In response to oxidative stress, GCN2 repressed NRF2 transcriptional activity. Knockdown of hepatic GCN2 by tail vein injection of an AAV8-shGcn2 vector attenuated hepatic steatosis and oxidative stress in leptin-deficient (ob/ob) mice in an NRF2-dependent manner. Inhibition of GCN2 by GCN2iB also ameliorated hepatic steatosis and oxidative stress in both ob/ob mice and high fat diet-fed mice, which was associated with significant changes in lipid and amino acid metabolic pathways. Untargeted metabolomics analysis revealed that GCN2iB decreased fatty acid and sphingomyelin levels but increased aliphatic amino acid and phosphatidylcholine levels in fatty livers. Collectively, our results provided the first direct evidence that GCN2 is a novel regulator of NRF2 and that specific GCN2 inhibitors might be potential drugs for NAFLD therapy.


Assuntos
Fator 2 Relacionado a NF-E2 , Hepatopatia Gordurosa não Alcoólica , Proteínas Serina-Treonina Quinases/metabolismo , Animais , Dieta Hiperlipídica , Glicogênio Sintase Quinase 3 beta/metabolismo , Proteína 1 Associada a ECH Semelhante a Kelch/genética , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Fígado/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Obesos , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Hepatopatia Gordurosa não Alcoólica/etiologia , Hepatopatia Gordurosa não Alcoólica/genética , Estresse Oxidativo
16.
Stem Cell Res Ther ; 12(1): 355, 2021 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-34147136

RESUMO

BACKGROUND: The adverse health effects of fine particulate matter (PM2.5) exposure are associated with marked inflammatory responses. Adipose-derived stem cells (ADSCs) have immunosuppressive effects, and ADSC transplantation could attenuate pulmonary fibrosis in different animal disease models. However, whether ADSCs affect PM2.5-induced lung injury has not been investigated. METHOD: C57BL/6 mice were exposed to PM2.5 every other day via intratracheal instillation for 4 weeks. After that, the mice received tail vein injections of ADSCs every 2 weeks. RESULTS: ADSC transplantation significantly attenuated systemic and pulmonary inflammation, cardiac dysfunction, fibrosis, and cell death in PM2.5-exposed mice. RNA-sequencing results and bioinformatic analysis suggested that the downregulated differentially expressed genes (DEGs) were mainly enriched in inflammatory and immune pathways. Moreover, ADSC transplantation attenuated PM2.5-induced cell apoptosis and pyroptosis in the lungs and hearts. CONCLUSION: ADSCs protect against PM2.5-induced adverse health effects through attenuating pulmonary inflammation and cell death. Our findings suggest that ADSC transplantation may be a potential therapeutic approach for severe air pollution-associated diseases.


Assuntos
Lesão Pulmonar , Tecido Adiposo , Animais , Pulmão , Lesão Pulmonar/induzido quimicamente , Lesão Pulmonar/genética , Lesão Pulmonar/terapia , Camundongos , Camundongos Endogâmicos C57BL , Material Particulado/toxicidade , Células-Tronco
17.
Redox Biol ; 41: 101886, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33592539

RESUMO

Polycystic ovary syndrome (PCOS) is a complex endocrine and metabolic disorder, which is often accompanied by oxidative stress. Tempol, a superoxide dismutase mimetic, protects against several diseases caused by oxidative stress. However, the effect of tempol on PCOS has not been investigated. The present study demonstrated the alleviation of ovarian dysfunction and glucose tolerance in dehydroepiandrosterone (DHEA)-induced PCOS rats treated with tempol. Tempol significantly reduced the intestinal oxidative stress in PCOS rats without affecting the ovarian redox rate. The 16S rDNA sequencing of the intestinal microbiome and non-targeted metabolomics analysis indicated significant differences in gut microbiota composition and serum metabolite profiles between the control and PCOS rats, and most of these differences were reduced after tempol intervention. Tempol alters the gut microbiome by increasing the abundance of genus Ruminococcus_1 and by decreasing the abundance of Ruminococcus_2, Staphylococcus, Ideonella, and Corynebnacterium genera. Tempol also attenuates the reduction of serum bile acid and stachyose levels in PCOS rats, and the serum stachyose level was significantly correlated with the abundance of 15 genera, particularly Ruminococcus_1 and Ruminococcus_2. Moreover, stachyose administration improved ovarian dysfunction in PCOS rats. Thus, our data indicate that tempol ameliorates PCOS phenotype by reducing intestinal oxidative stress, restoring gut dysbiosis, and modulating the interaction between gut microbiota and host metabolite. Therefore, tempol intervention is a potential therapeutic approach for PCOS.


Assuntos
Microbioma Gastrointestinal , Síndrome do Ovário Policístico , Animais , Óxidos N-Cíclicos , Feminino , Humanos , Estresse Oxidativo , Ratos , Marcadores de Spin
18.
Environ Pollut ; 264: 114716, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32559876

RESUMO

Emerging evidence has showed that exposure to airborne particulate matter (PM) with an aerodynamic diameter less than 2.5 µm (PM2.5) is associated with neurodegeneration. Our previous studies in vitro found that PM2.5 exposure causes primary neurons damage through activating microglia. However, the molecular mechanism of microglia-mediated neurotoxicity remains to elucidate. In this study, five groups (N = 13 or 10) of six-week-old male C57BL/6 mice were daily exposed to PM2.5 (0.1 or 1 mg/kg/day body weight), Chelex-treated PM2.5 (1 mg/kg/day body weight), PM2.5 (1 mg/kg/day body weight) plus CB-839 (glutaminase inhibitor), or deionized water by intranasal instillation for 28 days, respectively. Compared with the control groups, We found that PM2.5 triggered reactive oxygen species (ROS) generation and microglia activation evidenced by significant increase of ionized calcium binding adaptor molecule-1 (IBa-1) staining in the mouse olfactory bulbs (OB). Data from transmission electron microscope (TEM) images and Western blot analysis showed that PM2.5 significantly increased extracellular vesicles (EVs) release from OB or murine microglial line BV2 cells, and glutaminase C (GAC) expression and glutamate generation in isolated OB and BV2 cells. However, treatment with N-acetylcysteine (NAC) or CB-839 significantly diminished the number of EVs and the expression of GAC and abolished PM2.5-induced neurotoxicity. These findings provide new insights that PM2.5 induces oxidative stress and microglia activation through its metal contents and glutaminase-containing EVs in OBs, which may serve as a potential pathway/mechanism of excessive glutamate generation in PM2.5-induced neurotoxicity.


Assuntos
Vesículas Extracelulares , Glutaminase , Animais , Células Cultivadas , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microglia , Bulbo Olfatório , Material Particulado , Espécies Reativas de Oxigênio
19.
Free Radic Biol Med ; 152: 787-796, 2020 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-31972339

RESUMO

Chronic kidney disease (CKD) poses a considerable medical and public health challenge, and the Dahl/Salt Sensitive (Dahl/SS) strain is often used for CKD study. Extracellular superoxide dismutase (SOD3) is important for removing extracellular superoxide anions and is highly expressed in renal tissue. Using a novel rat strain with loss-of-function mutation of SOD3 created by replacing glutamate 124 of SOD3 with aspartic acid (SOD3E124D rat strain), we determined the effect of SOD3 on renal function and blood pressure in Dahl/SS rats. We find that SOD3E124D rats are phenotypically indistinguishable from wild type rats through 8 weeks of age, but develop profound CKD characterized by focal necrosis and fibrosis, glomerulosclerosis, massive proteinaceous cast accumulation with tubular dilatation, interstitial fibrosis with hypertension and renal failure by 21 weeks. The SOD3E124D strain represents a unique rat model that spontaneously develops CKD in an age-dependent fashion. The finding that loss of SOD3 causes CKD indicates that extracellular oxidative stress contributes to CKD and renal failure.


Assuntos
Hipertensão , Insuficiência Renal Crônica , Animais , Pressão Sanguínea , Hipertensão/genética , Hipertrofia Ventricular Esquerda , Rim , Mutação com Perda de Função , Mutação , Ratos , Ratos Endogâmicos Dahl , Insuficiência Renal Crônica/genética , Superóxido Dismutase/genética
20.
Redox Biol ; 28: 101345, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31669973

RESUMO

Fine particulate matter (PM2.5) airborne pollution increases the risk of respiratory and cardiovascular diseases. Although metformin is a well-known antidiabetic drug, it also confers protection against a series of diseases through the activation of AMP-activated protein kinase (AMPK). However, whether metformin affects PM2.5-induced adverse health effects has not been investigated. In this study, we exposed wild-type (WT) and AMPKα2-/- mice to PM2.5 every other day via intratracheal instillation for 4 weeks. After PM2.5 exposure, the AMPKα2-/- mice developed more severe lung injury and cardiac dysfunction than were developed in the WT mice; however the administration of metformin was effective in attenuating PM2.5-induced lung injury and cardiac dysfunction in both the WT and AMPKα2-/- mice. In the PM2.5-exposed mice, metformin treatment resulted in reduced systemic and pulmonary inflammation, preserved left ventricular ejection fraction, suppressed induction of pulmonary and myocardial fibrosis and oxidative stress, and increased levels of mitochondrial antioxidant enzymes. Moreover, pretreatment with metformin significantly attenuated PM2.5-induced cell death and oxidative stress in control and AMPKα2-depleted BEAS-2B and H9C2 cells, and was associated with preserved expression of mitochondrial antioxidant enzymes. These data support the notion that metformin protects against PM2.5-induced adverse health effects through a pathway that appears independent of AMPKα2. Our findings suggest that metformin may also be a novel drug for therapies that treat air pollution associated disease.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Cardiopatias/etiologia , Cardiopatias/metabolismo , Lesão Pulmonar/etiologia , Lesão Pulmonar/metabolismo , Metformina/farmacologia , Material Particulado/efeitos adversos , Substâncias Protetoras/farmacologia , Animais , Biomarcadores , Biópsia , Linhagem Celular , Modelos Animais de Doenças , Suscetibilidade a Doenças , Ecocardiografia , Fibrose , Cardiopatias/fisiopatologia , Humanos , Lesão Pulmonar/patologia , Masculino , Camundongos , Camundongos Knockout , Estresse Oxidativo , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...