Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 12(1): 10870, 2022 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-35760854

RESUMO

To address the demand for food by a rapidly growing human population, agricultural scientists have carried out both plant breeding and genetic engineering research. Previously, we reported that the constitutive expression of a pea apyrase (Nucleoside triphosphate, diphosphohydrolase) gene, psNTP9, under the control of the CaMV35S promoter, resulted in soybean plants with an expanded root system architecture, enhanced drought resistance and increased seed yield when they are grown in greenhouses under controlled conditions. Here, we report that psNTP9-expressing soybean lines also show significantly enhanced seed yields when grown in multiple different field conditions at multiple field sites, including when the gene is introgressed into elite germplasm. The transgenic lines have higher leaf chlorophyll and soluble protein contents and decreased stomatal density and cuticle permeability, traits that increase water use efficiency and likely contribute to the increased seed yields of field-grown plants. These altered properties are explained, in part, by genome-wide gene expression changes induced by the transgene.


Assuntos
Apirase , Glycine max , Apirase/metabolismo , Pisum sativum/genética , Melhoramento Vegetal , Sementes/genética , Glycine max/genética , Glycine max/metabolismo
2.
PLoS One ; 16(9): e0245802, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34525118

RESUMO

Glyphosate (N-phosphonomethyl-glycine) is the world's most widely used broad spectrum, post-emergence herbicide. It inhibits the chloroplast-targeted enzyme 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS; EC 2.5.1.19), a component of the plant and microorganism-specific shikimate pathway and a key catalyst in the production of aromatic amino acids. Variants of EPSPS that are not inhibited by glyphosate due to particular amino acid alterations in the active site of the enzyme are known. Some of these variants have been identified in weed species that have developed resistance to glyphosate because of the strong selective pressure of continuous, heavy glyphosate use. We have used TILLING (Targeting Induced Local Lesions in Genomes), a non-transgenic, target-selected, reverse genetics, mutation breeding technique, and conventional genetic crosses, to identify and combine, through two rounds of mutagenesis, wheat lines having both T102I and P106S (so-called TIPS enzyme) mutations in both the A and the D sub-genome homoeologous copies of the wheat EPSPS gene. The combined effects of the T102I and P106S mutations are known from previous work in multiple species to minimize the binding of the herbicide while maintaining the affinity of the catalytic site for its native substrates. These novel wheat lines exhibit substantial tolerance to commercially relevant levels of glyphosate.


Assuntos
Glicina/análogos & derivados , Triticum , 3-Fosfoshikimato 1-Carboxiviniltransferase , Mutação , Glifosato
3.
Front Plant Sci ; 12: 628521, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33584777

RESUMO

Nitrogen is an essential nutrient for plants, but crop plants are inefficient in the acquisition and utilization of applied nitrogen. This often results in producers over applying nitrogen fertilizers, which can negatively impact the environment. The development of crop plants with more efficient nitrogen usage is, therefore, an important research goal in achieving greater agricultural sustainability. We utilized genetically modified rice lines over-expressing a barley alanine aminotransferase (HvAlaAT) to help characterize pathways which lead to more efficient use of nitrogen. Under the control of a stress-inducible promoter OsAnt1, OsAnt1:HvAlaAT lines have increased above-ground biomass with little change to both nitrate and ammonium uptake rates. Based on metabolic profiles, carbon metabolites, particularly those involved in glycolysis and the tricarboxylic acid (TCA) cycle, were significantly altered in roots of OsAnt1:HvAlaAT lines, suggesting higher metabolic turnover. Moreover, transcriptomic data revealed that genes involved in glycolysis and TCA cycle were upregulated. These observations suggest that higher activity of these two processes could result in higher energy production, driving higher nitrogen assimilation, consequently increasing biomass production. Other potential mechanisms contributing to a nitrogen-use efficient phenotype include involvements of phytohormonal responses and an alteration in secondary metabolism. We also conducted basic growth studies to evaluate the effect of the OsAnt1:HvAlaAT transgene in barley and wheat, which the transgenic crop plants increased seed production under controlled environmental conditions. This study provides comprehensive profiling of genetic and metabolic responses to the over-expression of AlaAT and unravels several components and pathways which contribute to its nitrogen-use efficient phenotype.

4.
Plant Biotechnol J ; 15(6): 775-787, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27889933

RESUMO

Nitrogen (N) fertilizers are a major input cost in rice production, and its excess application leads to major environmental pollution. Development of rice varieties with improved nitrogen use efficiency (NUE) is essential for sustainable agriculture. Here, we report the results of field evaluations of marker-free transgenic NERICA4 (New Rice for Africa 4) rice lines overexpressing barley alanine amino transferase (HvAlaAT) under the control of a rice stress-inducible promoter (pOsAnt1). Field evaluations over three growing seasons and two rice growing ecologies (lowland and upland) revealed that grain yield of pOsAnt1:HvAlaAT transgenic events was significantly higher than sibling nulls and wild-type controls under different N application rates. Our field results clearly demonstrated that this genetic modification can significantly increase the dry biomass and grain yield compared to controls under limited N supply. Increased yield in transgenic events was correlated with increased tiller and panicle number in the field, and evidence of early establishment of a vigorous root system in hydroponic growth. Our results suggest that expression of the HvAlaAT gene can improve NUE in rice without causing undesirable growth phenotypes. The NUE technology described in this article has the potential to significantly reduce the need for N fertilizer and simultaneously improve food security, augment farm economics and mitigate greenhouse gas emissions from the rice ecosystem.


Assuntos
Nitrogênio/metabolismo , Oryza/metabolismo , Alanina Transaminase/genética , Alanina Transaminase/metabolismo , Genótipo , Oryza/enzimologia , Oryza/genética , Plantas Geneticamente Modificadas/enzimologia , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Transformação Genética/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...