Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanoscale ; 14(38): 14135-14145, 2022 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-36111536

RESUMO

Polymer dielectrics have attracted ever-increasing attention for electrical energy storage applications in recent years. Typically, polymer-based nanocomposite films are adopted to obtain polymer dielectrics with high energy density but sometime suffer from the inhomogeneous distribution of fillers. In this work, enhanced breakdown strength, suppressed dielectric loss and improved energy storage performances of PVDF film are concurrently achieved via the regulation of the sub-nano free volume, without introduction of any kinds of fillers and also minimizing the uneven distribution of the local electric field. The most improved breakdown strength is up to 488 MV m-1, with an enhancement of 60% compared with that of pristine PVDF, which enables the irradiated PVDF film to exhibit an improved polarization strength and charged energy density, giving rise to a maximum polarization strength of 3.55 µC cm-2 and a charged energy density of 9.75 J cm-3. More importantly, the irradiated PVDF film exhibits a superior discharged energy density of 7.91 J cm-3 which is 261% that of the pristine PVDF film, while maintaining the charge-discharge efficiency above 80%. In addition, the alteration of experimental breakdown strength with the increase of irradiation dose is found to be inversely correlated with the size variation of free volume holes, and the theoretical simulation of local electric field distribution further proves that the breakdown strength enhancement originates from the size shrinkage of free volume holes. The adjustment of free volume provides a potentially effective way to regulate the dielectric properties and energy storage performances of dipolar polymers.

2.
RSC Adv ; 12(38): 24734-24742, 2022 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-36128369

RESUMO

The free volume effects on the dielectric properties of the polymer are ambiguous, and the quantitative effect of free volume on the dielectric properties has rarely been systematically studied, especially in the high-elastic state dipolar (HESD) polymer. In this work, the free volume of dipolar poly(vinylidene fluoride) (PVDF) is regulated by the addition of Al2O3, which greatly increase the size of free volume holes. Then the effect of free volume on the dielectric properties of PVDF/Al2O3 composites is discussed. The greatly enlarged size of free volume holes is believed to potentially generate disparate effects on dielectric constant under different frequencies in such kinds of HESD polymer-based composites, bringing about more remarkable frequency dependence of the dielectric constant. The influence of atomic-scale microstructure based on free volume further clarifies the free volume effects on the dielectric properties and provides valuable insights for the research of dielectric behaviour of polymer composites, which is constructive to design novel dielectric materials and further optimize the dielectric properties of dipolar dielectric polymer composites.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...