Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38603463

RESUMO

The inadequate electrical conductivity of metal sulfides, along with their tendency to agglomerate, has hindered their use in energy storage and catalysis. The construction of a heterojunction can ameliorate these deficiencies to some extent. In this paper, MnS-BaS heterojunction catalysts were prepared by a hydrothermal method, which is a simple and inexpensive process. The MnS-BaS heterojunction catalysts exhibited superior performance owing to the strong synergistic interaction between MnS and BaS. Density functional theory (DFT) calculations reveal strong interactions at the heterojunction interface and significant electron transfer between MnS and BaS, which further modulates the electronic structure of Mn. The elevation of the center of the d-band enhances the adsorption of oxygen and oxygen-containing intermediates on the catalyst, thus promoting the oxygen reduction reaction (ORR). The practical application of MnS-BaS catalysts was tested by assembling zinc-air batteries. This study provides a rational strategy for designing transition metal catalysts that are efficient and low cost.

2.
Spectrochim Acta A Mol Biomol Spectrosc ; 310: 123952, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38295594

RESUMO

Carbon dots (CDs) possess the merits such as energy efficiency, green sustainability and environmental friendliness, comparing with top-down synthesis methods at higher pressure or temperature condition. Here, a variety of emission states CDs were prepared by using the method of room temperature chemistry by selecting green raw materials such as glucose, p-phthalaldehyde and m-diethylaminophenol. The luminescence mechanism was studied in detail. The luminescent center of blue emitting carbon dots (B-CDs) and green emitting carbon dots (G-CDs) is CO bond, and the increased contents of CO bond lead to the creation of new energy levels between the energy gaps of HOMO and LUMO levels, which results in the red shift of luminescence wavelength. The emission state of red emitting carbon dots (R-CDs) is due to the formation of amino N. In addition, R-CDs have an exclusive respond to dopamine (DA) and are regarded as good fluorescent probes for detecting DA. Furthermore, the addition of ascorbic acid (AA) restores the luminescence of R-CDs quenched by DA. Therefore, R-CDs has great application potential as a selective fluorescent "turn on-off" probe.

3.
Chempluschem ; 88(7): e202300238, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37310283

RESUMO

Nitrogen-doped carbon is considered one of the most promising oxygen reduction catalysts due to its low cost and high activity, however, it still falls short of Pt/C. In this study, we report a strategy for the preparation of highly reactive N-doped hierarchical porous carbon by primary pyrolysis using zinc acetate as a stand-alone zinc source and amino-rich reactants as carbon and nitrogen sources to introduce Zn-Nx structures into mesoporous structures generated by the hard template method using the strong coordination of zinc and amino groups. Benefited from the simultaneous optimization of the hierarchical porous structure and nitrogen-doping, the half-wave potential of Zn(OAc)2 -DCD/HPC is as high as 0.909 V vs. RHE, much better than that of commercial Pt/C catalysts (0.872 V vs. RHE). In addition, zinc-air batteries assembled with Zn(OAc)2 -DCD/HPC (Pmax =198 mW cm-2 ) as the cathode exhibit higher peak power density compared to Pt/C (Pmax =168 mW cm-2 ). This strategy might open up new opportunities for designing and developing highly active metal-free catalysts.


Assuntos
Carbono , Zinco , Humanos , Porosidade , Hipóxia , Nitrogênio , Oxigênio
4.
J Colloid Interface Sci ; 645: 618-626, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37167911

RESUMO

The design of high-performance oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) dual-functional catalysts is not only important for the further applications of zinc-air batteries (ZABs) but also a major challenge in the field of energy conversion. The cheap 1,2,4-triazole (1,2,4-TZ) can be decomposed easily by heat, making it a high research value in carbon catalysts derived from metal-organic frameworks (MOFs). Here, Co4N particles encapsulated at the top of N-doped carbon nanotubes (Co4N@NCNTs) were conveniently prepared by 1,2,4-TZ-assisted pyrolysis of Co-MOF-74 for the first time. Owing to the excellent activity of Co4N particles and the highly graphitized N-doped carbon nanotubes (NCNTs), Co4N@NCNTs obtained at 900 °C (Co4N@NCNT-900) exhibited astonishing catalytic performance in both ORR and OER, and high reversible oxygen bifunctional activity (ΔE = 0.685 V). Moreover, Co4N@NCNT-900 displayed a larger discharge power density (122 mW cm-2), a better specific capacity (811.8 mAh g-1), and more excellent durability during the ZAB test, implying that Co4N@NCNT-900 can act as a bifunctional high active catalyst in ZABs.

5.
ACS Appl Mater Interfaces ; 15(13): 16552-16561, 2023 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-36960922

RESUMO

Water electrolysis in alkaline media is the most promising technology for hydrogen production, but efficient electrocatalysts are required to reduce the overpotential in HER and OER processes. In this work, the multicomponent transition metal catalyst Cr-Cu/CoOx was loaded on copper foam by electrodeposition and annealing, and the catalyst exhibited excellent electrochemical activity. The HER overpotential is 21 mV and the OER overpotential is 252 mV at a current density of 10 mA cm-2. The overall water splitting voltage is 1.51 V, even better than the Pt/C//RuO2 two-electrode system (1.61 V). The excellent performance of this catalyst is mainly derived from the close synergistic interaction among Cu, Co, and Cr. The doping of Cr modulates the valence states of Cu and Co at the active sites and improves the adsorption of various reaction intermediates. Density functional theory (DFT) calculations show that the doping of Cr can optimize the adsorption of the reaction intermediate H*. Meanwhile, the high-valent Cr and Co promote hydrolysis through strong adsorption with OH-. The present work provides a reasonable strategy for designing low-cost transition metals as efficient catalysts for water electrolysis.

6.
J Colloid Interface Sci ; 640: 801-808, 2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-36905889

RESUMO

Developing highly durable and active catalysts with the morphology of structurally robust nanoframes toward oxygen reduction reaction (ORR) and methanol oxidation reaction (MOR) in acidic environment is crucial but still a great challenge to completely achieve in a single material. Herein, PtCuCo nanoframes (PtCuCo NFs) with internal support structures as enhanced bifunctional electrocatalysts were prepared by a facile one-pot approach. PtCuCo NFs exhibited remarkable activity and durability for ORR and MOR owing to the ternary compositions and the structure-fortifying frame structures. Impressively, the specific/mass activity of PtCuCo NFs were 12.8/7.5 times as large as that of commercial Pt/C for ORR in perchloric acid solution. For MOR in sulfuric acid solution, the mass/specific activity of PtCuCo NFs was 1.66 A mgPt-1/4.24 mA cm-2, which was 5.4/9.4 times as large as that of Pt/C. This work may provide a promising nanoframe material to develop dual catalysts for fuel cells.

7.
Chemistry ; 28(61): e202201860, 2022 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-35950688

RESUMO

To reduce the over-dependence on Pt, Pd-based catalysts have become one of the most effective candidates for oxygen reduction reaction (ORR). In order to further accelerate the ORR kinetics and strengthen the catalytic performance of Pd catalysts, component optimization and morphology design have been adopted. Although great progress has been made, it is still difficult to obtain porous ultrathin nanosheets with excellent performance by a simple method. Here, ultrathin PdCuMo porous nanosheets (PdCuMo NSs) were successfully prepared. This structure possessed a large specific surface area with rich cavities and structural defects, significantly enhancing its ORR performance. In special, the mass activity of PdCuMo NSs was 1.46 A mg-1 at 0.90 V, which was 12.2, 8.6, and 2.7 times as high as that of Pd/C, Pt/C, and PdCuMo nanoparticles (PdCuMo NPs), respectively. In addition, it had an excellent ability to resist CO poisoning and exhibited remarkable long-term stability.

8.
Small ; 18(3): e2105201, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34837322

RESUMO

Transition-metal oxides with a strain effect have attracted immense interest as cathode materials for fuel cells. However, owing to the introduction of heterostructures, substrates, or a large number of defects during the synthesis of strain-bearing catalysts, not only is the structure-activity relationship complicated but also their performance is mediocre. In this study, a mode of strain introduction is reported. Transition-metal ions with different electronegativities are intercalated into the cryptomelane-type manganese oxide octahedral molecular sieves (OMS-2) structure with K ions as the template, resulting in the octahedral structural distortion of MnO6 and producing strains of different degrees. Experimental studies reveal that Ni-OMS-2 with a high compressive strain (4.12%) exhibits superior oxygen reduction performance with a half-wave potential (0.825 V vs RHE) greater than those of other reported manganese-based oxides. This result is related to the increase in the covalence of MnO6 octahedral configuration and shifting down of the eg band center caused by the higher compression strain. This research avoids the introduction of new chemical bonds in the main structure, weakens the effect of eg electron filling number, and emphasizes the pure strain effect. This concept can be extended to other transition-metal-oxide catalysts.


Assuntos
Óxidos , Oxigênio , Íons , Compostos de Manganês , Oxirredução , Óxidos/química
9.
ACS Appl Mater Interfaces ; 13(8): 9865-9874, 2021 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-33594893

RESUMO

Electrocatalytic water splitting is a promising technology for large-scale hydrogen production. However, it requires efficient catalysts to overcome the large overpotentials in the oxygen evolution reaction (OER) and hydrogen evolution reaction (HER). Herein, we report a novel heterostructure catalyst Co9S8/Cu2S on copper foam (Co9S8/Cu2S/CF) with multistep impregnation and electrodeposition. Due to the strong interfacial interaction, the interfacial electrons transfer from Co sites to S sites, which promote the adsorption of oxygen-containing intermediates, water molecules, as well as the dissociation of water molecules. Therefore, the heterostructure catalyst exhibits low overpotentials of 195 mV for OER and 165 mV for HER at 10 mA cm-2, respectively. Moreover, it only needs 1.6 V to realize water splitting at 10 mA cm-2 in a two-electrode cell. This work provides an efficient method to tailor the surface electronic structure through specific morphological design and construct a heterostructure interface to achieve alkaline water splitting.

10.
RSC Adv ; 10(63): 38583-38587, 2020 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-35517560

RESUMO

Spark ablation in gas (SAG) technology has the characteristics of being green, fast quenching, fast dynamics and specializes in producing metallic nanoparticles with a clean surface, small size, and abundant defects. In this study, Ag nanoparticles were prepared via SAG and in situ loaded on a carbon fiber through nitrogen flow. The effect of the carrier gas flow rate and deposition time on the particle size and the dispersibility of the as-prepared Ag nanoparticles on the carbon fiber by SAG were investigated, and the hydrogen evolution reaction (HER) performances of the samples in acidic media were further studied. When the carrier gas flow rate and deposition time are controlled at 5 L min-1 and 120 min, respectively, the sample displays an optimal activity with an overpotential of 362 mV at 10 mA cm-2, which is superior to commercial Ag nanoparticles on carbon fibers. Accordingly, this synthetic technology provides a new way to obtain efficient metallic nano-catalysts and is expected to achieve large-scale application.

11.
Front Chem ; 7: 674, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31681728

RESUMO

The development of efficient, stable, and low-cost catalytic material for the oxygen reduction reaction (ORR) is currently highly desirable but challenging. In this work, based on first-principles calculation, the stabilities, catalytic activities and catalytic mechanisms of isolated Au atom supported on defective porous BN (p-BN) have been studied in detail. The results reveal that the defective p-BN anchor Au atom strongly to ensure the stability of Au/p-BN. Based on frontier molecular orbital and charge-density analysis, isolated Au atom supported on porous BN with VN defect (Au/p-BN-VN) is an effective ORR catalyst. Especially, the low barriers of the formation (0.38 eV) and dissociation (0.31 eV) of *OOH and the instability of H2O2 on Au/p-BN-VN catalyst suggest that ORR proceeds via 4-electron pathway. Along the favorable pathway, the reduction of O2 to *OOH is the rate-limiting step with the largest activation barrier of 0.38 eV and the maximum free energy change is 1.88 eV. Our results provide a useful guidance for the design and fabrication of new Au-base catalyst with high-efficiency and are beneficial for the developing of novel isolated metal atom catalysts for ORR.

12.
ACS Appl Mater Interfaces ; 11(46): 43781-43788, 2019 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-31660716

RESUMO

High magnetization materials are in great demand for the fabrication of advanced multifunctional magnetic devices. Notwithstanding this demand, the development of new materials with these attributes has been relatively slow. In this work, we propose a new strategy to achieve high magnetic moments above room temperature. Our material engineering approach invoked the embedding of magnetic nanoclusters in an oxide matrix. By precisely controlling pulsed laser deposition parameters, Co nanoclusters are formed in a 5 at % Co-TiO2 film. The presence of these nanoclusters was confirmed using transmission electron microscopy, energy-dispersive X-ray spectroscopy, and X-ray absorption fine structure. The film exhibits a very high saturation magnetization of 99 emu/cm3. Detailed studies using X-ray magnetic circular dichroism confirm that Co has an enhanced magnetic moment of 3.5 µB/atom, while the Ti and O also contribute to the magnetic moments. First-principles calculations supported our hypothesis that the metallic Co nanoclusters surrounded by a TiO2 matrix can exhibit both large spin and orbital moments. Moreover, a quantum confinement effect results in a high Curie temperature for the embedded Co nanoclusters. These findings reveal that 1-2 nm nanoclusters that are quantum confined can exhibit very large magnetic moments above room temperature, representing a promising advance for the design of new high magnetization materials.

13.
Spectrochim Acta A Mol Biomol Spectrosc ; 223: 117366, 2019 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-31323493

RESUMO

In this work, we presented a facile microwave method to prepare blue emitting carbon dots (CDs) using lysine as carbon source and realized the specific detection of seven types of antibiotics by CDs and Al3+ ions via a two-step method. The CDs have good solubility in water and their excitation spectra are exactly coincided with the absorption of some typical antibiotics, which leads to the fluorescence quenching of CDs (OFF state). The inhibition mechanism of fluorescence is induced by the combination of inner filtering effect (IFE) and static quenching effect (SQE). In addition, the quenched fluorescence can be recovered by adding Al3+ ions (On state), and seven types of antibiotics can be distinguished exactly according to the emission peak position and intensity. It not only provides a new and convenient method for the detection of antibiotics, but also provides a new idea for the further application of CDs in optical sensing.


Assuntos
Alumínio/química , Antibacterianos/análise , Carbono/química , Pontos Quânticos/química , Íons , Tamanho da Partícula , Pontos Quânticos/ultraestrutura , Espectrofotometria Ultravioleta
14.
Front Chem ; 7: 224, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31069212

RESUMO

Developing efficient and earth-abundant electrocatalysts for the oxygen evolution reaction (OER) is still a big challenge. Here, perovskite La0.4Sr0.6Ni0.5Fe0.5O3 nanoparticles were rationally designed and synthesized by the sol-gel method with an average size around 25 nm, and it has a remarkable intrinsically activity and stability in 1 M KOH solution. Compared with other perovskite (LaNiO3, LaFeO3, and LaNi0.5Fe0.5O3) catalysts, La0.4Sr0.6Ni0.5Fe0.5O3 exhibits superior OER performance, smaller tafel slope and lower overpotential. The high electrochemical performance of La0.4Sr0.6Ni0.5Fe0.5O3 is attributed to its optimized e g filling (~1.2), as well as the excellent conductivity. This study demonstrates co-doping process is an effective way for increasing the intrinsic catalytic activity of the perovskite.

15.
ACS Appl Mater Interfaces ; 10(26): 22372-22380, 2018 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-29893112

RESUMO

Five percent Fe-doped In2O3 films were deposited using a pulsed laser deposition system. X-ray diffraction and transmission electron microscopy analysis show that the films deposited under oxygen partial pressures of 10-3 and 10-5 Torr are uniform without clusters or secondary phases. However, the film deposited under 10-7 Torr has a Fe-rich phase at the interface. Magnetic measurements demonstrate that the magnetization of the films increases with decreasing oxygen partial pressure. Muon spin relaxation (µSR) analysis indicates that the volume fractions of the ferromagnetic phases in PO2 = 10-3, 10-5, and 10-7 Torr-deposited samples are 23, 49, and 68%, respectively, suggesting that clusters or secondary phases may not be the origin of the ferromagnetism and that the ferromagnetism is not carrier-mediated. We propose that the formation of magnetic bound polarons is the origin of the ferromagnetism. In addition, both µSR and polarized neutron scattering demonstrate that the Fe-rich phase at the interface has a lower magnetization compared to the uniformly distributed phases.

16.
Spectrochim Acta A Mol Biomol Spectrosc ; 203: 214-221, 2018 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-29870905

RESUMO

Boron carbon oxynitride quantum dots (BCNO QDs) with blue emission were prepared via the template of SBA-15 (a typical mesoporous silica). A modulated photoluminescence sensor was developed based on the different quenching effects of Cu2+ or Hg2+ ions on the luminescence intensity of BCNO QDs. The Cu2+ or Hg2+ ions have an interaction with BCNO QDs due to the electrons transfer between the BCNO and Cu2+ or Hg2+ ions, and the detection limit of Cu2+ or Hg2+ ion concentration can be as less as 10 nM. The BCNO-Cr6+ mixture can be served as a turn-on fluorescent sensor for detecting the ascorbic acid based on the inner filter effect since overlapping of excitation and emission spectra between Cr6+ ions and BCNO QDs. Moreover, the BCNO QDs can also be applied to fingerprint identification and organic fluorescent films under ultraviolet excitation.

17.
Nanomaterials (Basel) ; 8(4)2018 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-29649110

RESUMO

In this paper, spherical carbon dots (CDs) with distinct compositions and surface states have been successfully synthesized by a facile microwave method. From the fluorescence spectra, several characteristic luminescence features have been observed: surface amino groups are dominant in the whole emission spectra centering at 445 nm, and the fingerprint emissions relevant to the impurity levels formed by some groups related to C and N elements, including C-C/C=C (intrinsic C), C-N (graphitic N), N-containing heterocycles (pyridine N) and C=O groups, are located around 305 nm, 355 nm, 410 nm, and 500 nm, respectively. Those fine luminescence features could be ascribed to the electron transition among various trapping states within the band structure caused by different chemical bonds in carbon cores, or functional groups attached to the CDs' surfaces. According to the theoretical calculations and experimental results, a scheme of the band structure has been proposed to describe the positions of those trapping states within the band gap. Additionally, it has also been observed that the emission of CDs is sensitive to the concentration of Fe3+ ions with a linear relation in the range of Fe3+ concentration from 12.5 to 250 µM.

18.
Nanotechnology ; 24(40): 405701, 2013 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-24029011

RESUMO

We report on the controlled growth of novel BN-coated Ca(1-x)Sr(x)S:Eu nanowires via a solid-liquid-solid process. The Ca(1-x)Sr(x)S solid solution forms as one-dimensional nanowires and has been coated with homogeneous protective BN nanolayers. The structure and luminescence properties of this new nanocomposite have been systematically investigated. High-spatial-resolution cathodoluminescence investigations reveal that effective red color tuning has been achieved by tailoring the composition of the Ca(1-x)Sr(x)S nanowires. Moreover, codoping of Ce(3+) and Eu(2+) in the CaS nanowire can induce energy transfer in the matrix and make it possible to obtain enhanced orange color in the nanowires. The BN-coated Ca(1-x)Sr(x)S:Eu solid-solution nanowires are envisaged to be valuable red-emitting nanophosphors and useful in advanced nanodevices and white LEDs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...