Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cancers (Basel) ; 15(18)2023 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-37760571

RESUMO

Immortalized cell lines originating from tumors and cultured in monolayers in vitro display consistent behavior and response, and generate reproducible results across laboratories. However, for certain endpoints, these cell lines behave quite differently from the original solid tumors. Thereby, the homogeneity of immortalized cell lines and two-dimensionality of monolayer cultures deters from the development of new therapies and translatability of results to the more complex situation in vivo. Organoids originating from tissue biopsies and spheroids from cell lines mimic the heterogeneous and multidimensional characteristics of tumor cells in 3D structures in vitro. Thus, they have the advantage of recapitulating the more complex tissue architecture of solid tumors. In this review, we discuss recent efforts in basic and preclinical cancer research to establish methods to generate organoids/spheroids and living biobanks from endocrine tissues and target organs under endocrine control while striving to achieve solutions in personalized medicine.

2.
Mol Metab ; 71: 101704, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36907509

RESUMO

OBJECTIVE: Skeletal muscle regeneration is markedly impaired during aging. How adult muscle stem cells contribute to this decrease in regenerative capacity is incompletely understood. We investigated mechanisms of age-related changes in myogenic progenitor cells using the tissue-specific microRNA 501. METHODS: Young and old C57Bl/6 mice were used (3 months or 24 months of age, respectively) with or without global or tissue-specific genetic deletion of miR-501. Muscle regeneration was induced using intramuscular cardiotoxin injection or treadmill exercise and analysed using single cell and bulk RNA sequencing, qRT-PCR and immunofluorescence. Muscle fiber damage was assessed with Evan`s blue dye (EBD). In vitro analysis was performed in primary muscle cells obtained from mice and humans. RESULTS: Single cell sequencing revealed myogenic progenitor cells in miR-501 knockout mice at day 6 after muscle injury that are characterized by high levels of myogenin and CD74. In control mice these cells were less in number and already downregulated after day 3 of muscle injury. Muscle from knockout mice had reduced myofiber size and reduced myofiber resilience to injury and exercise. miR-501 elicits this effect by regulating sarcomeric gene expression through its target gene estrogen-related receptor gamma (Esrrg). Importantly, in aged skeletal muscle where miR-501 was significantly downregulated and its target Esrrg significantly upregulated, the number of myog+/CD74+ cells during regeneration was upregulated to similar levels as observed in 501 knockout mice. Moreover, myog+/CD74+-aged skeletal muscle exhibited a similar decrease in the size of newly formed myofibers and increased number of necrotic myofibers after injury as observed in mice lacking miR-501. CONCLUSIONS: miR-501 and Esrrg are regulated in muscle with decreased regenerative capacity and loss of miR-501 is permissive to the appearance of CD74+ myogenic progenitors. Our data uncover a novel link between the metabolic transcription factor Esrrg and sarcomere formation and demonstrate that stem cell heterogeneity in skeletal muscle during aging is under miRNA control. Targeting Esrrg or myog+/CD74+ progenitor cells might improve fiber size and myofiber resilience to exercise in aged skeletal muscle.


Assuntos
MicroRNAs , Regeneração , Adulto , Idoso , Animais , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , MicroRNAs/genética , MicroRNAs/metabolismo , Músculo Esquelético/metabolismo , Miogenina/genética , Miogenina/metabolismo , Miogenina/farmacologia , Regeneração/genética , Células-Tronco/metabolismo
3.
Cancers (Basel) ; 15(6)2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36980669

RESUMO

Cancers display dynamic interactions with their complex microenvironments that influence tumor growth, invasiveness, and immune evasion, thereby also influencing potential resistance to therapeutic treatments. The tumor microenvironment (TME) includes cells of the immune system, the extracellular matrix, blood vessels, and other cell types, such as fibroblasts or adipocytes. Various cell types forming this TME secrete exosomes, and molecules thereby released into the TME have been shown to be important mediators of cellular communication and interplay. Specific stressors in the TME, such as hypoxia, starvation, inflammation, and damage, can furthermore induce autophagy, a fundamental cellular process that degrades and recycles molecules and subcellular components, and recently it has been demonstrated that the small non-coding vault RNA1-1 plays a role as a regulator of autophagy and the coordinated lysosomal expression and regulation (CLEAR) network. Here, we demonstrate for the first time that intra-tumoral damage following effective therapeutic treatment is linked to specific intracellular synthesis and subsequent exosomal release of vault RNAs in endocrine tumors in vitro and in vivo. While we observed a subsequent upregulation of autophagic markers under classical chemotherapeutic conditions, a downregulation of autophagy could be detected under conditions strongly involving inflammatory cascades.

4.
J Mol Med (Berl) ; 100(11): 1647-1658, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36178526

RESUMO

Skeletal muscle exerts many beneficial effects on the human body including the contraction-dependent secretion of peptides termed myokines. We have recently connected the myokine secreted protein acidic and rich in cysteine (SPARC) to the formation of intramuscular adipose tissue (IMAT) in skeletal muscle from aged mice and humans. Here, we searched for inducers of SPARC in order to uncover novel treatment approaches for IMAT. Endurance exercise in mice as well as forskolin treatment in vitro only modestly activated SPARC levels. However, through pharmacological treatments in vitro, we identified IGF-I as a potent inducer of SPARC expression in muscle cells, likely through a direct activation of its promoter via phosphatidylinositol 4,5-bisphospate 3-kinase (PI3K)-dependent signaling. We employed two different mouse models of growth hormone (GH)/IGF-I deficiency to solidify our understanding of the relationship between IGF-I and SPARC in vivo. GH administration robustly increased intramuscular SPARC levels (3.5-fold) in GH releasing hormone receptor-deficient mice and restored low intramuscular SPARC expression in skeletal muscle from aged mice. Intramuscular glycerol injections induced higher levels of adipocyte markers (adiponectin, perilipin) in aged compared to young mice, which was not prevented by GH treatment. Our study provides a roadmap for the study of myokine regulation during aging and demonstrates that the GH/IGF-I axis is critical for SPARC expression in skeletal muscle. Although GH treatment did not prevent IMAT formation in the glycerol model, targeting SPARC by exercise or by activation of IGF-I signaling might offer a novel therapeutic strategy against IMAT formation during aging. KEY MESSAGES : IGF-I regulates the myokine SPARC in muscle cells directly at the promoter level. GH/IGF-I is able to restore the decreased SPARC levels in aged skeletal muscle. The glycerol model induces higher adipocyte markers in aged compared to young muscle. GH treatment does not prevent IMAT formation in the glycerol model.


Assuntos
Fator de Crescimento Insulin-Like I , Músculo Esquelético , Osteonectina , Animais , Camundongos , Adiponectina/metabolismo , Colforsina/metabolismo , Cisteína , Glicerol/metabolismo , Hormônio do Crescimento/metabolismo , Músculo Esquelético/metabolismo , Osteonectina/genética , Osteonectina/metabolismo , Perilipinas/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Condicionamento Físico Animal
5.
Cell Death Dis ; 13(7): 648, 2022 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-35879289

RESUMO

The adrenal gland provides an important function by integrating neuronal, immune, vascular, metabolic and endocrine signals under a common organ capsule. It is the central organ of the stress response system and has been implicated in numerous stress-related disorders. While for other diseases, regeneration of healthy organ tissue has been aimed at such approaches are lacking for endocrine diseases - with the exception of type-I-diabetes. Moreover, adrenal tumor formation is very common, however, appropriate high-throughput applications reflecting the high heterogeneity and furthermore relevant 3D-structures in vitro are still widely lacking. Recently, we have initiated the development of standardized multidimensional models of a variety of endocrine cell/tissue sources in a new multiwell-format. Firstly, we confirmed common applicability for pancreatic pseudo-islets. Next, we translated applicability for spheroid establishment to adrenocortical cell lines as well as patient material to establish spheroids from malignant, but also benign adrenal tumors. We aimed furthermore at the development of bovine derived healthy adrenal organoids and were able to establish steroidogenic active organoids containing both, cells of cortical and medullary origin. Overall, we hope to open new avenues for basic research, endocrine cancer and adrenal tissue-replacement-therapies as we demonstrate potential for innovative mechanistic insights and personalized medicine in endocrine (tumor)-biology.


Assuntos
Glândulas Suprarrenais , Organoides , Animais , Bovinos , Humanos , Medicina de Precisão
6.
J Endocrinol ; 253(1): 1-11, 2022 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-35017316

RESUMO

Pancreatic ß-cells depend on the well-balanced regulation of cytosolic zinc concentrations, providing sufficient zinc ions for the processing and storage of insulin, but avoiding toxic effects. The zinc transporter ZnT8, encoded by SLC30A8,is a key player regarding islet cell zinc homeostasis, and polymorphisms in this gene are associated with altered type 2 diabetes susceptibility in man. The objective of this study was to investigate the role of ZnT8 and zinc in situations of cellular stress as hypoxia or inflammation. Isolated islets of WT and global ZnT8-/- mice were exposed to hypoxia or cytokines and cell death was measured. To explore the role of changing intracellular Zn2+ concentrations, WT islets were exposed to different zinc concentrations using zinc chloride or the zinc chelator N,N,N',N'-tetrakis(2-pyridinylmethyl)-1,2-ethanediamine (TPEN). Hypoxia or cytokine (TNF-α, IFN-γ, IL1-ß) treatment induced islet cell death, but to a lesser extent in islets from ZnT8-/- mice, which were shown to have a reduced zinc content. Similarly, chelation of zinc with TPEN reduced cell death in WT islets treated with hypoxia or cytokines, whereas increased zinc concentrations aggravated the effects of these stressors. This study demonstrates a reduced rate of cell death in islets from ZnT8-/- mice as compared to WT islets when exposed to two distinct cellular stressors, hypoxia or cytotoxic cytokines. This protection from cell death is, in part, mediated by a reduced zinc content in islet cells of ZnT8-/- mice. These findings may be relevant for altered diabetes burden in carriers of risk SLC30A8 alleles in man.


Assuntos
Diabetes Mellitus Tipo 2/genética , Predisposição Genética para Doença/genética , Ilhotas Pancreáticas/metabolismo , Transportador 8 de Zinco/genética , Animais , Apoptose/genética , Morte Celular/efeitos dos fármacos , Morte Celular/genética , Hipóxia Celular , Linhagem Celular , Proliferação de Células/genética , Células Cultivadas , Citocinas/farmacologia , Diabetes Mellitus Tipo 2/metabolismo , Feminino , Secreção de Insulina/efeitos dos fármacos , Células Secretoras de Insulina/efeitos dos fármacos , Células Secretoras de Insulina/metabolismo , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microscopia Confocal , Zinco/metabolismo , Zinco/farmacologia , Transportador 8 de Zinco/metabolismo
7.
Mol Metab ; 36: 100967, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32240622

RESUMO

OBJECTIVE: Decreased muscle mass is a major contributor to age-related morbidity, and strategies to improve muscle regeneration during ageing are urgently needed. Our aim was to identify the subset of relevant microRNAs (miRNAs) that partake in critical aspects of muscle cell differentiation, irrespective of computational predictions, genomic clustering or differential expression of the miRNAs. METHODS: miRNA biogenesis was deleted in primary myoblasts using a tamoxifen-inducible CreLox system and combined with an add-back miRNA library screen. RNA-seq experiments, cellular signalling events, and glycogen synthesis, along with miRNA inhibitors, were performed in human primary myoblasts. Muscle regeneration in young and aged mice was assessed using the cardiotoxin (CTX) model. RESULTS: We identified a hierarchical non-clustered miRNA network consisting of highly (miR-29a), moderately (let-7) and mildly active (miR-125b, miR-199a, miR-221) miRNAs that cooperate by directly targeting members of the focal adhesion complex. Through RNA-seq experiments comparing single versus combinatorial inhibition of the miRNAs, we uncovered a fundamental feature of this network, that miRNA activity inversely correlates to miRNA cooperativity. During myoblast differentiation, combinatorial inhibition of the five miRNAs increased activation of focal adhesion kinase (FAK), AKT, and p38 mitogen-activated protein kinase (MAPK), and improved myotube formation and insulin-dependent glycogen synthesis. Moreover, antagonizing the miRNA network in vivo following CTX-induced muscle regeneration enhanced muscle mass and myofiber formation in young and aged mice. CONCLUSION: Our results provide novel insights into the dynamics of miRNA cooperativity and identify a miRNA network as therapeutic target for impaired focal adhesion signalling and muscle regeneration during ageing.


Assuntos
Adesões Focais/genética , Músculo Esquelético/fisiologia , Regeneração/genética , Animais , Diferenciação Celular/genética , Linhagem Celular , Deleção de Genes , Redes Reguladoras de Genes/genética , Humanos , Camundongos , Camundongos Endogâmicos C57BL , MicroRNAs/biossíntese , MicroRNAs/genética , Desenvolvimento Muscular/genética , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/metabolismo , Mioblastos/citologia , Mioblastos/metabolismo , Transdução de Sinais/genética
8.
JCI Insight ; 5(1)2020 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-31830004

RESUMO

High-density lipoproteins (HDL) contain hundreds of lipid species and proteins and exert many potentially vasoprotective and antidiabetogenic activities on cells. To resolve structure-function-disease relationships of HDL, we characterized HDL of 51 healthy subjects and 98 patients with diabetes (T2DM), coronary heart disease (CHD), or both for protein and lipid composition, as well as functionality in 5 cell types. The integration of 40 clinical characteristics, 34 nuclear magnetic resonance (NMR) features, 182 proteins, 227 lipid species, and 12 functional read-outs by high-dimensional statistical modeling revealed, first, that CHD and T2DM are associated with different changes of HDL in size distribution, protein and lipid composition, and function. Second, different cellular functions of HDL are weakly correlated with each other and determined by different structural components. Cholesterol efflux capacity (CEC) was no proxy of other functions. Third, 3 potentially novel determinants of HDL function were identified and validated by the use of artificially reconstituted HDL, namely the sphingadienine-based sphingomyelin SM 42:3 and glycosylphosphatidylinositol-phospholipase D1 for the ability of HDL to inhibit starvation-induced apoptosis of human aortic endothelial cells and apolipoprotein F for the ability of HDL to promote maximal respiration of brown adipocytes.


Assuntos
Doença das Coronárias/metabolismo , Diabetes Mellitus/metabolismo , Lipoproteínas HDL/química , Lipoproteínas HDL/metabolismo , Aterosclerose , Bioensaio , Diabetes Mellitus Tipo 2/metabolismo , Humanos , Lipidômica , Lipoproteínas/metabolismo , Masculino , Proteômica , Relação Estrutura-Atividade
9.
Development ; 143(22): 4137-4148, 2016 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-27707793

RESUMO

MicroRNAs (miRNAs) are important regulators of skeletal muscle regeneration, but the underlying mechanisms are still incompletely understood. Here, comparative miRNA sequencing analysis of myogenic progenitor cells (MPs) and non-myogenic fibroblast-adipocyte progenitors (FAPs) during cardiotoxin (CTX)-induced muscle injury uncovered miR-501 as a novel muscle-specific miRNA. miR-501 is an intronic miRNA and its expression levels in MPs correlated with its host gene, chloride channel, voltage-sensitive 5 (Clcn5). Pharmacological inhibition of miR-501 dramatically blunted the induction of embryonic myosin heavy chain (MYH3) and, to a lesser extent, adult myosin isoforms during muscle regeneration, and promoted small-diameter neofibers. An unbiased target identification approach in primary myoblasts validated gigaxonin as a target of miR-501 that mimicked the effect of miR-501 inhibition on MYH3 expression. In the mdx mouse model, which models a pathological disease state, not only was miR-501 induced in regenerating skeletal muscle, but also its serum levels were increased, which correlated with the disease state of the animals. Our results suggest that miR-501 plays a key role in adult muscle regeneration and might serve as a novel serum biomarker for the activation of adult muscle stem cells.


Assuntos
Células-Tronco Adultas/metabolismo , MicroRNAs/genética , Músculo Esquelético/fisiologia , Regeneração/genética , Adulto , Animais , Células Cultivadas , Regulação da Expressão Gênica , Células HEK293 , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos mdx , Desenvolvimento Muscular/genética , Músculo Esquelético/metabolismo , Cadeias Pesadas de Miosina/genética , Análise de Sequência de RNA
10.
Stem Cells ; 34(3): 768-80, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26731484

RESUMO

The expansion of myogenic progenitors (MPs) in the adult muscle stem cell niche is critical for the regeneration of skeletal muscle. Activation of quiescent MPs depends on the dismantling of the basement membrane and increased access to growth factors such as fibroblast growth factor-2 (FGF2). Here, we demonstrate using microRNA (miRNA) profiling in mouse and human myoblasts that the capacity of FGF2 to stimulate myoblast proliferation is mediated by miR-29a. FGF2 induces miR-29a expression and inhibition of miR-29a using pharmacological or genetic deletion decreases myoblast proliferation. Next generation RNA sequencing from miR-29a knockout myoblasts (Pax7(CE/+) ; miR-29a(flox/flox) ) identified members of the basement membrane as the most abundant miR-29a targets. Using gain- and loss-of-function experiments, we confirm that miR-29a coordinately regulates Fbn1, Lamc1, Nid2, Col4a1, Hspg2 and Sparc in myoblasts in vitro and in MPs in vivo. Induction of FGF2 and miR-29a and downregulation of its target genes precedes muscle regeneration during cardiotoxin (CTX)-induced muscle injury. Importantly, MP-specific tamoxifen-induced deletion of miR-29a in adult skeletal muscle decreased the proliferation and formation of newly formed myofibers during both CTX-induced muscle injury and after a single bout of eccentric exercise. Our results identify a novel miRNA-based checkpoint of the basement membrane in the adult muscle stem cell niche. Strategies targeting miR-29a might provide useful clinical approaches to maintain muscle mass in disease states such as ageing that involve aberrant FGF2 signaling.


Assuntos
Diferenciação Celular/genética , Fator 2 de Crescimento de Fibroblastos/biossíntese , MicroRNAs/genética , Regeneração , Animais , Fator 2 de Crescimento de Fibroblastos/genética , Regulação da Expressão Gênica no Desenvolvimento/genética , Técnicas de Inativação de Genes , Humanos , Camundongos , Desenvolvimento Muscular/genética , Músculo Esquelético/citologia , Músculo Esquelético/crescimento & desenvolvimento , Cicatrização/genética
11.
Behav Brain Res ; 233(2): 398-404, 2012 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-22633920

RESUMO

The maternal environment has a significant role in the normal development of the fetus and may have long-term impact on brain development including critical central pathways such as the gamma-aminobutyric acid (GABA), serotonergic and the neurotrophin systems. For example, maternal malnutrition plays an important role in programming many aspects of physiology and behavior including predisposition to mental-health related disorders such as anxiety. Here we investigated the effects of maternal high-fat diet or control diet for nine weeks (prior to gestation, gestation and lactation) on the adult offspring with respect to anxiety related behaviors as well as exploration and conditioned fear response. We found that offspring born to high-fat diet mothers showed increased anxiety-like behaviors, but intact conditioned fear response and exploratory behavior. In addition, brain-derived neurotrophic factor (BDNF) was significantly increased in the dorsal hippocampus, while GABA(A) alpha2 receptor subunit and 5-hydroxytryptamine 1A (5-HT1A) receptor showed increased levels in the ventral hippocampus. In summary, these findings suggest that maternal high-fat diet consumption during critical periods in the development of the fetus, might increase the risk of abnormal behaviors in adulthood related to anxiety.


Assuntos
Dieta Hiperlipídica/efeitos adversos , Emoções/efeitos dos fármacos , Transtornos do Humor/etiologia , Efeitos Tardios da Exposição Pré-Natal/induzido quimicamente , Efeitos Tardios da Exposição Pré-Natal/fisiopatologia , Análise de Variância , Animais , Animais Recém-Nascidos , Encéfalo/metabolismo , Fator Neurotrófico Derivado do Encéfalo/genética , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Condicionamento Clássico/efeitos dos fármacos , Condicionamento Clássico/fisiologia , Comportamento Exploratório/fisiologia , Feminino , Masculino , Aprendizagem em Labirinto/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Transtornos do Humor/patologia , Gravidez , Temperatura de Transição
12.
PLoS One ; 6(9): e25108, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21949864

RESUMO

Type III Nrg1, a member of the Nrg1 family of signaling proteins, is expressed in sensory neurons, where it can signal in a bi-directional manner via interactions with the ErbB family of receptor tyrosine kinases (ErbB RTKs). Type III Nrg1 signaling as a receptor (Type III Nrg1 back signaling) can acutely activate phosphatidylinositol-3-kinase (PtdIns3K) signaling, as well as regulate levels of α7* nicotinic acetylcholine receptors, along sensory axons. Transient receptor potential vanilloid 1 (TRPV1) is a cation-permeable ion channel found in primary sensory neurons that is necessary for the detection of thermal pain and for the development of thermal hypersensitivity to pain under inflammatory conditions. Cell surface expression of TRPV1 can be enhanced by activation of PtdIns3K, making it a potential target for regulation by Type III Nrg1. We now show that Type III Nrg1 signaling in sensory neurons affects functional axonal TRPV1 in a PtdIns3K-dependent manner. Furthermore, mice heterozygous for Type III Nrg1 have specific deficits in their ability to respond to noxious thermal stimuli and to develop capsaicin-induced thermal hypersensitivity to pain. Cumulatively, these results implicate Type III Nrg1 as a novel regulator of TRPV1 and a molecular mediator of nociceptive function.


Assuntos
Axônios/metabolismo , Inflamação/etiologia , Neuregulina-1/fisiologia , Dor/fisiopatologia , Células Receptoras Sensoriais/metabolismo , Canais de Cátion TRPV/fisiologia , Sensação Térmica , Animais , Capsaicina/toxicidade , Células Cultivadas , Immunoblotting , Inflamação/metabolismo , Inflamação/patologia , Masculino , Camundongos , Camundongos Knockout , Dor/induzido quimicamente , Técnicas de Patch-Clamp , Sensação/efeitos dos fármacos , Células Receptoras Sensoriais/citologia , Fármacos do Sistema Sensorial/toxicidade , Transdução de Sinais
13.
Nature ; 432(7020): 1027-32, 2004 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-15616563

RESUMO

The regulation of fat and glucose metabolism in the liver is controlled primarily by insulin and glucagon. Changes in the circulating concentrations of these hormones signal fed or starvation states and elicit counter-regulatory responses that maintain normoglycaemia. Here we show that in normal mice, plasma insulin inhibits the forkhead transcription factor Foxa2 by nuclear exclusion and that in the fasted (low insulin) state Foxa2 activates transcriptional programmes of lipid metabolism and ketogenesis. In insulin-resistant or hyperinsulinaemic mice, Foxa2 is inactive and permanently located in the cytoplasm of hepatocytes. In these mice, adenoviral expression of Foxa2T156A, a nuclear, constitutively active Foxa2 that cannot be inhibited by insulin, decreases hepatic triglyceride content, increases hepatic insulin sensitivity, reduces glucose production, normalizes plasma glucose and significantly lowers plasma insulin. These changes are associated with increased expression of genes encoding enzymes of fatty acid oxidation, ketogenesis and glycolysis. Chronic hyperinsulinaemia in insulin-resistant syndromes results in the cytoplasmic localization and inactivation of Foxa2, thereby promoting lipid accumulation and insulin resistance in the liver. Pharmacological intervention to inhibit phosphorylation of Foxa2 may be an effective treatment for type 2 diabetes.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Diabetes Mellitus/metabolismo , Jejum/metabolismo , Corpos Cetônicos/metabolismo , Metabolismo dos Lipídeos , Fígado/metabolismo , Proteínas Nucleares/metabolismo , Fatores de Transcrição/metabolismo , Animais , Proteínas Estimuladoras de Ligação a CCAAT/metabolismo , Linhagem Celular Tumoral , Núcleo Celular/metabolismo , Proteínas de Ligação a DNA/genética , Diabetes Mellitus/sangue , Diabetes Mellitus/patologia , Proteína Forkhead Box O1 , Fatores de Transcrição Forkhead , Glucose/metabolismo , Fator 3-beta Nuclear de Hepatócito , Humanos , Hiperinsulinismo/sangue , Hiperinsulinismo/metabolismo , Hiperinsulinismo/patologia , Insulina/sangue , Insulina/fisiologia , Resistência à Insulina , Corpos Cetônicos/biossíntese , Fígado/citologia , Fígado/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Obesos , Mitocôndrias/metabolismo , Proteínas Nucleares/genética , Oxirredução , Fosforilação , Proteína de Ligação a Elemento Regulador de Esterol 1 , Fatores de Transcrição/genética , Transcrição Gênica
14.
Proc Natl Acad Sci U S A ; 100(20): 11624-9, 2003 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-14500912

RESUMO

Hepatocyte nuclear factors 3 alpha, beta, and gamma (Foxa-1, -2, and -3) are transcriptional activators of important metabolic genes in the liver that are suppressed by the actions of insulin. Here, we show that the activation of phosphatidylinositol 3-kinase-Akt by insulin induces Foxa-2 phosphorylation, nuclear exclusion, and inhibition of Foxa-2-dependent transcriptional activity. Foxa-2 physically interacts with Akt, a key mediator of the phosphatidylinositol 3-kinase pathway and is phosphorylated at a single conserved site (T156) that is absent in Foxa-1 and Foxa-3 proteins. This Akt phosphorylation site in Foxa-2 is highly conserved from mammals to insects. Mutant Foxa-2T156A is resistant to Akt-mediated phosphorylation, nuclear exclusion, and transcriptional inactivation of Foxa-2-regulated gene expression. These results implicate an evolutionarily conserved mechanism in the regulation of Foxa-2-dependent transcriptional control by extracellular signals such as insulin.


Assuntos
Núcleo Celular/metabolismo , Citosol/metabolismo , Proteínas de Ligação a DNA/fisiologia , Insulina/fisiologia , Proteínas Nucleares/fisiologia , Proteínas Serina-Treonina Quinases , Proteínas Proto-Oncogênicas/metabolismo , Fatores de Transcrição , Sequência de Aminoácidos , Linhagem Celular , Núcleo Celular/enzimologia , Citosol/enzimologia , Proteínas de Ligação a DNA/metabolismo , Ativação Enzimática , Fator 3-beta Nuclear de Hepatócito , Humanos , Dados de Sequência Molecular , Proteínas Nucleares/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Fosforilação , Transporte Proteico , Proteínas Proto-Oncogênicas c-akt , Proteínas Recombinantes/metabolismo , Homologia de Sequência de Aminoácidos , Transcrição Gênica/fisiologia
15.
Mol Genet Metab ; 76(1): 23-30, 2002 May.
Artigo em Inglês | MEDLINE | ID: mdl-12175777

RESUMO

The nature of the molecular lesions in the alpha-galactosidase A (alpha-Gal A) gene causing Fabry disease was determined in 50 unrelated families with the classic phenotype of this X-linked recessive lysosomal storage disease. Genomic DNA was isolated from affected males or obligate carrier females, and the entire alpha-Gal A coding region as well as the flanking and intronic sequences were analyzed by PCR amplification and automated sequencing. Forty-five new mutations were identified including 38 single base substitutions (32 missense and four nonsense) and nine gene rearrangements: MIR, M42T, G43D, G43V, H46Y, F50C, L68F, G132R, T141I, Y152X, K168R, G183S, V199M, P205R, Y207S, Q221X, C223R, C223Y, D234Y, G271C, A288P, P293A, R301G, I303N, I317T, E341D, P362L, R363C, R363H, G373D, I384N, T385P, Q396X, E398K, S401X, P409A, g7325insC, g7384del13, g8341delG, g8391del4/ins3, g10511delTAGT, g10704delACAG, g11019insG, g11021insG, and g11048delAGG. In the remaining five Fabry families, four previously reported mutations were detected (W81X, R112C, g11011delTC, and g11050delGAG) of which the R112C substitution was found in two families who were unrelated by haplotyping. These studies further define the heterogeneity of mutations in the alpha-Gal A gene causing the classical Fabry disease phenotype, and permit precise carrier detection and prenatal diagnosis in these families.


Assuntos
Doença de Fabry/genética , Mutação , alfa-Galactosidase/genética , Doença de Fabry/etiologia , Feminino , Doenças Genéticas Ligadas ao Cromossomo X , Humanos , Leucócitos , Masculino , Deleção de Sequência , alfa-Galactosidase/sangue
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...