Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Entropy (Basel) ; 25(12)2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-38136452

RESUMO

The future quantum internet will leverage existing communication infrastructures, including deployed optical fibre networks, to enable novel applications that outperform current information technology. In this scenario, we perform a feasibility study of quantum communications over an industrial 224 km submarine optical fibre link deployed between Southport in the United Kingdom (UK) and Portrane in the Republic of Ireland (IE). With a characterisation of phase drift, polarisation stability and the arrival time of entangled photons, we demonstrate the suitability of the link to enable international UK-IE quantum communications for the first time.

3.
Nat Commun ; 13(1): 157, 2022 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-35013290

RESUMO

Quantum mechanics allows distribution of intrinsically secure encryption keys by optical means. Twin-field quantum key distribution is one of the most promising techniques for its implementation on long-distance fiber networks, but requires stabilizing the optical length of the communication channels between parties. In proof-of-principle experiments based on spooled fibers, this was achieved by interleaving the quantum communication with periodical stabilization frames. In this approach, longer duty cycles for the key streaming come at the cost of a looser control of channel length, and a successful key-transfer using this technique in real world remains a significant challenge. Using interferometry techniques derived from frequency metrology, we develop a solution for the simultaneous key streaming and channel length control, and demonstrate it on a 206 km field-deployed fiber with 65 dB loss. Our technique reduces the quantum-bit-error-rate contributed by channel length variations to <1%, representing an effective solution for real-world quantum communications.

4.
Sci Rep ; 6: 35149, 2016 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-27734921

RESUMO

Quantum key distribution (QKD) provides an attractive means for securing communications in optical fibre networks. However, deployment of the technology has been hampered by the frequent need for dedicated dark fibres to segregate the very weak quantum signals from conventional traffic. Up until now the coexistence of QKD with data has been limited to bandwidths that are orders of magnitude below those commonly employed in fibre optic communication networks. Using an optimised wavelength divisional multiplexing scheme, we transport QKD and the prevalent 100 Gb/s data format in the forward direction over the same fibre for the first time. We show a full quantum encryption system operating with a bandwidth of 200 Gb/s over a 100 km fibre. Exploring the ultimate limits of the technology by experimental measurements of the Raman noise, we demonstrate it is feasible to combine QKD with 10 Tb/s of data over a 50 km link. These results suggest it will be possible to integrate QKD and other quantum photonic technologies into high bandwidth data communication infrastructures, thereby allowing their widespread deployment.

5.
Sci Rep ; 5: 18121, 2015 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-26656307

RESUMO

Optical access networks connect multiple endpoints to a common network node via shared fibre infrastructure. They will play a vital role to scale up the number of users in quantum key distribution (QKD) networks. However, the presence of power splitters in the commonly used passive network architecture makes successful transmission of weak quantum signals challenging. This is especially true if QKD and data signals are multiplexed in the passive network. The splitter introduces an imbalance between quantum signal and Raman noise, which can prevent the recovery of the quantum signal completely. Here we introduce a method to overcome this limitation and demonstrate coexistence of multi-user QKD and full power data traffic from a gigabit passive optical network (GPON) for the first time. The dual feeder implementation is compatible with standard GPON architectures and can support up to 128 users, highlighting that quantum protected GPON networks could be commonplace in the future.

6.
Opt Express ; 22(19): 23121-8, 2014 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-25321782

RESUMO

We present results from the first field-trial of a quantum-secured DWDM transmission system, in which quantum key distribution (QKD) is combined with 4 × 10 Gb/s encrypted data and transmitted simultaneously over 26 km of field installed fiber. QKD is used to frequently refresh the key for AES-256 encryption of the 10 Gb/s data traffic. Scalability to over 40 DWDM channels is analyzed.


Assuntos
Segurança Computacional/instrumentação , Desenho Assistido por Computador , Tecnologia de Fibra Óptica/instrumentação , Processamento de Sinais Assistido por Computador/instrumentação , Telecomunicações/instrumentação , Desenho de Equipamento
7.
Nature ; 501(7465): 69-72, 2013 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-24005413

RESUMO

The theoretically proven security of quantum key distribution (QKD) could revolutionize the way in which information exchange is protected in the future. Several field tests of QKD have proven it to be a reliable technology for cryptographic key exchange and have demonstrated nodal networks of point-to-point links. However, until now no convincing answer has been given to the question of how to extend the scope of QKD beyond niche applications in dedicated high security networks. Here we introduce and experimentally demonstrate the concept of a 'quantum access network': based on simple and cost-effective telecommunication technologies, the scheme can greatly expand the number of users in quantum networks and therefore vastly broaden their appeal. We show that a high-speed single-photon detector positioned at a network node can be shared between up to 64 users for exchanging secret keys with the node, thereby significantly reducing the hardware requirements for each user added to the network. This point-to-multipoint architecture removes one of the main obstacles restricting the widespread application of QKD. It presents a viable method for realizing multi-user QKD networks with efficient use of resources, and brings QKD closer to becoming a widespread technology.

8.
Phys Rev Lett ; 105(14): 140504, 2010 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-21230820

RESUMO

An asymmetric preparation of the quantum states sent through a noisy channel can enable a new way to monitor and actively compensate the channel noise. The paradigm of such an asymmetric treatment of quantum information is the Bennett 1992 protocol, in which the counts in the two separate bases are in direct connection with the channel noise. Using this protocol as a guiding example, we show how to correct the phase drift of a communication channel without using reference pulses, interruptions of the quantum transmission, or public data exchanges.

9.
Phys Rev Lett ; 96(20): 200501, 2006 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-16803160

RESUMO

We describe the experimental test of a quantum key distribution performed with a two-way protocol without using entanglement. An individual incoherent eavesdropping is simulated and induces a variable amount of noise on the communication channel. This allows a direct verification of the agreement between theory and practice.

10.
Phys Rev Lett ; 94(14): 140501, 2005 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-15904054

RESUMO

We propose a protocol for deterministic communication that does not make use of entanglement. It exploits nonorthogonal states in a two-way quantum channel to attain unconditional security and high efficiency of the transmission. We explicitly show the scheme is secure against a class of individual attacks regardless of the noise on the channel. Its experimental realization is feasible with current technology.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...