Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Immunol ; 8(90): eadi3974, 2023 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-38064568

RESUMO

Multiple studies have broadened the roles of natural killer (NK) cells functioning as purely innate lymphocytes by demonstrating that they are capable of putative antigen-specific immunological memory against multiple infectious agents including HIV-1 and influenza. However, the mechanisms underlying antigen specificity remain unknown. Here, we demonstrate that antigen-specific human NK cell memory develops upon exposure to both HIV and influenza, unified by a conserved and epitope-specific targetable mechanism largely dependent on the activating CD94/NKG2C receptor and its ligand HLA-E. We validated the permanent acquisition of antigen specificity by individual memory NK cells by single-cell cloning. We identified elevated expression of KLRG1, α4ß7, and NKG2C as biomarkers of antigen-specific NK cell memory through complex immunophenotyping. Last, we uncovered individual HLA-E-restricted peptides that may constitute the dominant NK cell response in HIV-1- and influenza-infected persons in vivo. Our findings clarify the mechanisms contributing to antigen-specific memory NK cell responses and suggest that they could be potentially targeted therapeutically for vaccines or other therapeutic interventions.


Assuntos
Infecções por HIV , Antígenos HLA-E , Influenza Humana , Subfamília C de Receptores Semelhantes a Lectina de Células NK , Humanos , Antígenos de Histocompatibilidade Classe I , Infecções por HIV/metabolismo , Influenza Humana/metabolismo , Células Matadoras Naturais , Subfamília C de Receptores Semelhantes a Lectina de Células NK/imunologia , Subfamília C de Receptores Semelhantes a Lectina de Células NK/metabolismo , Antígenos HLA-E/imunologia , Antígenos HLA-E/metabolismo
2.
Cell Rep Med ; 3(10): 100773, 2022 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-36208628

RESUMO

Natural killer (NK) cells are critical modulators of HIV transmission and disease. Recent evidence suggests a loss of NK cell cytotoxicity during aging, yet analysis of NK cell biology and aging in people with HIV (PWH) is lacking. Herein, we perform comprehensive analyses of people aging with and without HIV to determine age-related NK phenotypic changes. Utilizing high-dimensional flow cytometry, we analyze 30 immune-related proteins on peripheral NK cells from healthy donors, PWH with viral suppression, and viremic PWH. NK cell phenotypes are dynamic across aging but change significantly in HIV and on antiretroviral drug therapy (ART). NK cells in healthy aging show increasing ⍺4ß7 and decreasing CCR7 expression and a reverse phenomenon in PWH. These HIV-associated trafficking patterns could be due to NK cell recruitment to HIV reservoir formation in lymphoid tissue or failed mucosal signaling in the HIV-infected gut but appear to be tight delineators of age-related NK cell changes.


Assuntos
Infecções por HIV , HIV-1 , Humanos , Receptores CCR7/metabolismo , Células Matadoras Naturais/metabolismo , Antirretrovirais/metabolismo , Infecções por HIV/tratamento farmacológico
3.
Front Immunol ; 10: 1850, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31474977

RESUMO

Despite efficient suppression of plasma viremia in people living with HIV (PLWH) on cART, evidence of HIV-induced immunosuppression remains, and normally benign and opportunistic pathogens become major sources of co-morbidities, including virus-induced cancers. In fact, cancer remains a primary cause of death even in virally suppressed PLWH. Natural killer (NK) cells provide rapid early responses to HIV infection, contribute substantially to disease modulation and vaccine protection, and are also major therapeutic targets for cancer immunotherapy. However, much like other lymphocyte populations, recent burgeoning evidence suggests that in chronic conditions like HIV, NK cells can become functionally exhausted with impaired cytotoxic function, altered cytokine production and impaired antibody-dependent cell-mediated cytotoxicity. Recent work suggests functional anergy is likely due to low-level ongoing virus replication, increased inflammatory cytokines, or increased presence of MHClow target cells. Indeed, HIV-induced loss of NK cell-mediated control of lytic EBV infection has been specifically shown to cause lymphoma and also increases replication of CMV. In this review, we will discuss current understanding of NK cell modulation of HIV disease, reciprocal exhaustion of NK cells, and how this may impact increased cancer incidences and prospects for NK cell-targeted immunotherapies. Finally, we will review the most recent evidence supporting adaptive functions of NK cells and highlight the potential of adaptive NK cells for cancer immunotherapy.


Assuntos
Infecções por HIV/imunologia , HIV-1/imunologia , Células Matadoras Naturais/imunologia , Neoplasias/imunologia , Citotoxicidade Celular Dependente de Anticorpos/imunologia , Citocinas/imunologia , Citocinas/metabolismo , Infecções por HIV/virologia , HIV-1/fisiologia , Humanos , Imunoterapia/métodos , Subpopulações de Linfócitos/imunologia , Subpopulações de Linfócitos/metabolismo , Neoplasias/terapia , Neoplasias/virologia , Viremia/sangue , Viremia/imunologia , Viremia/virologia
4.
J Virol ; 93(16)2019 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-31167916

RESUMO

Recently, we and others have shown that natural killer (NK) cells exhibit memory-like recall responses against cytomegalovirus (CMV) and human immunodeficiency/virus simian immunodeficiency virus (HIV/SIV) infections. Although the mechanism(s) have not been fully delineated, several groups have shown that the activating receptor NKG2C is elevated on NK cells in the context of rhesus CMV (rhCMV) or human CMV (hCMV) infections. CD94, which heterodimerizes with NKG2C is also linked to adaptive NK cell responses. Because nonhuman primates (NHP) play a crucial role in modeling HIV (SIV) infections, it is crucial to be able to assess and characterize the NKG2 family in NHP. Unfortunately, it is not possible to detect CD94 using commercially available antibodies in NHP. Our work, a first for NHP, has focused on developing RNA flow cytometry using mRNA transcripts as proxies distinguishing NKG2C from NKG2A. We have expanded the application of this technology and here we show the first characterization of CD94+ (KLRD1+) NK cells in NHP using multiparametric RNA flow cytometry. Peripheral blood mononuclear cells from naive and matched acutely (n = 4) or chronically (n = 12) SIV-infected rhesus macaques were analyzed by flow cytometry using commercially available antibodies, determining expression of transcripts for NKG2A, NKG2C, and CD94 (KLRC1, KLRC2, and KLRD1, respectively) on NK cells using RNA flow cytometry. Our data show that KLRC1+/- KLRC2+ KLRD1+ NK cells decrease following chronic, but not acute, infection with SIV. This approach will allow us to investigate the kinetics of infection and NK memory formation and will further improve our understanding of basic NK cell biology, especially in the context of SIV infection.IMPORTANCE Nonhuman primates play a crucial role in approximating human biology and many diseases that are difficult, if not impossible, to achieve in other animal models, notably HIV. Current advances in adaptive NK cell research positions us to address fundamental deficiencies in our fight against infection and disease at the earliest moments after infection or substantially earlier in disease progression. We show here that we can identify specific NK cell subpopulations that are modulated following chronic, but not acute, SIV infection. The ability to identify these subsets more precisely will inform therapeutic and vaccine strategies targeting an optimized NK cell response.


Assuntos
Células Matadoras Naturais/imunologia , Células Matadoras Naturais/metabolismo , Subfamília D de Receptores Semelhantes a Lectina de Células NK/metabolismo , Síndrome de Imunodeficiência Adquirida dos Símios/imunologia , Síndrome de Imunodeficiência Adquirida dos Símios/metabolismo , Vírus da Imunodeficiência Símia/imunologia , Animais , Biomarcadores , Linhagem Celular , Interações Hospedeiro-Patógeno/imunologia , Imunofenotipagem , Subpopulações de Linfócitos/imunologia , Subpopulações de Linfócitos/metabolismo , Macaca mulatta , Subfamília C de Receptores Semelhantes a Lectina de Células NK/metabolismo , Síndrome de Imunodeficiência Adquirida dos Símios/virologia
5.
J Immunol Res ; 2019: 9804584, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31019982

RESUMO

The design of immunogens susceptible to elicit potent and broadly neutralizing antibodies against the human immunodeficiency virus type 1 (HIV-1) remains a veritable challenge in the course of vaccine development. Viral envelope proteins adopt different conformational states during the entry process, allowing the presentation of transient neutralizing epitopes. We focused on the highly conserved 3S motif of gp41, which is exposed to the surface envelope in its trimeric prefusion state. Vaccination with a W614A-modified 3S peptide induces in animals neutralizing anti-HIV-1 antibodies among which we selected clone F8. We used F8 as bait to select for W614A-3S phage-peptide mimics. Binding and molecular docking studies revealed that F8 interacts similarly with W614A-3S and a Mim_F8-1 mimotope, despite their lack of sequence homology, suggesting structural mimicry. Finally, vaccination of mice with the purified Mim_F8-1 phage elicited HIV-1-neutralizing antibodies that bound to the cognate W614A-3S motif. Collectively, our findings provide new insights into the molecular design of immunogens to elicit antibodies with neutralizing properties.


Assuntos
Anticorpos Neutralizantes/imunologia , Mapeamento de Epitopos/métodos , Epitopos/imunologia , Anticorpos Anti-HIV/imunologia , Proteína gp41 do Envelope de HIV/imunologia , Animais , Anticorpos Monoclonais/imunologia , Bacteriófagos/imunologia , HIV-1 , Camundongos , Camundongos Endogâmicos BALB C , Modelos Moleculares , Simulação de Acoplamento Molecular , Testes de Neutralização , Peptídeos/administração & dosagem , Peptídeos/imunologia , Ligação Proteica/efeitos dos fármacos
6.
Eur J Immunol ; 49(8): 1153-1166, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31016720

RESUMO

Cytokine-induced memory-like (CIML) NK cells are endowed with the capacity to mediate enhanced effector functions upon cytokine or activating receptor restimulation for several weeks following short-term preactivation with IL-12, IL-15, and IL-18. Promising results from a first-in-human clinical trial highlighted the clinical potential of CIML NK cells as adoptive immunotherapy for patients with hematologic malignancies. However, the mechanisms underlying CIML NK cell differentiation and increased functionality remain incompletely understood. Semaphorin 7A (SEMA7A) is a potent immunomodulator expressed in activated lymphocytes and myeloid cells. In this study, we show that SEMA7A is substantially upregulated on NK cells stimulated with cytokines, and specifically marks activated NK cells with a strong potential to release IFN-γ. In particular, preactivation of NK cells with IL-12+IL-15+IL-18 resulted in greater than tenfold upregulation of SEMA7A and enhanced expression of the ligand for SEMA7A, integrin-ß1, on CIML NK cells. Strikingly, preactivation in the presence of antibodies targeting SEMA7A lead to significantly decreased IFN-γ production following restimulation. These results imply a novel mechanism by which cytokine-enhanced SEMA7A/integrin-ß1 interaction promotes CIML NK cell differentiation and maintenance of increased functionality. Our data suggest that targeting SEMA7A/integrin-ß1 signaling might provide a novel immunotherapeutic approach to potentiate antitumor activity of CIML NK cells.


Assuntos
Antígenos CD/metabolismo , Memória Imunológica , Células Matadoras Naturais/imunologia , Neoplasias/imunologia , Semaforinas/metabolismo , Antígenos CD/genética , Células Cultivadas , Citocinas/metabolismo , Citometria de Fluxo , Proteínas Ligadas por GPI/genética , Proteínas Ligadas por GPI/metabolismo , Humanos , Vigilância Imunológica , Imunomodulação , Integrina beta1/metabolismo , Interferon gama/metabolismo , Ativação Linfocitária , Ligação Proteica , Semaforinas/genética , Regulação para Cima
7.
J Leukoc Biol ; 105(6): 1253-1259, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30730588

RESUMO

NK cells play a critical role in antiviral and antitumor responses. Although current NK cell immune therapies have focused primarily on cancer biology, many of these advances can be readily applied to target HIV/simian immunodeficiency virus (SIV)-infected cells. Promising developments include recent reports that CAR NK cells are capable of targeted responses while producing less off-target and toxic side effects than are associated with CAR T cell therapies. Further, CAR NK cells derived from inducible pluripotent stem cells or cell lines may allow for more rapid "off-the-shelf" access. Other work investigating the IL-15 superagonist ALT-803 (now N803) may also provide a recourse for enhancing NK cell responses in the context of the immunosuppressive and inflammatory environment of chronic HIV/SIV infections, leading to enhanced control of viremia. With a broader acceptance of research supporting adaptive functions in NK cells it is likely that novel immunotherapeutics and vaccine modalities will aim to generate virus-specific memory NK cells. In doing so, better targeted NK cell responses against virus-infected cells may usher in a new era of NK cell-tuned immune therapy.


Assuntos
Transferência Adotiva , Infecções por HIV , HIV-1/imunologia , Memória Imunológica , Células Matadoras Naturais , Síndrome de Imunodeficiência Adquirida dos Símios , Vírus da Imunodeficiência Símia/imunologia , Animais , Infecções por HIV/imunologia , Infecções por HIV/terapia , Humanos , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/patologia , Células Matadoras Naturais/transplante , Proteínas/uso terapêutico , Proteínas Recombinantes de Fusão , Síndrome de Imunodeficiência Adquirida dos Símios/imunologia , Síndrome de Imunodeficiência Adquirida dos Símios/patologia , Síndrome de Imunodeficiência Adquirida dos Símios/terapia
8.
AIDS ; 33(1): 23-32, 2019 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-30325780

RESUMO

OBJECTIVE: HIV-1 and HIV-2 differ notably in their epidemiology, with worldwide HIV-1 spread and HIV-2 mainly confined to West Africa. Natural killer (NK) cells are critical antiviral effectors of the immune system; however, limited information is available about these innate effector cells during HIV-2 infection. METHOD: In this study, 24 untreated HIV-2-infected patients were analyzed and compared with 21 long-term nonprogressor and 10 controller HIV-1 patients, and healthy donors. Extensive phenotype and functional NK-cell characteristics, as well as ligands of activating NK receptors involved in NK lysis were determined by flow cytometry. RESULTS: We report in HIV-2 patients a very significant reduced expression of the activating NKp30 receptor (P < 0.0001) on NK cells, much higher than observed in HIV-1 patients. The impaired expression of NKp30 is correlated negatively with HLA-DR (r = -0.5970; P = 0.0002), and positively with both NKG2A (r = 0.5324; P < 0.0001) and Siglec-7 (r = 0.5621; P = 0.0004). HIV-2 patients with NKp30 NK cells displayed overproduction of IFN-γ (P < 0.0001) associated with impaired cytolytic function when tested against target cells expressing surface B7-H6. This cellular ligand of NKp30 is strongly detectable as a surface molecule on CD4 T cells infected by HIV-2. CONCLUSION: Altogether, our data suggested that the defective expression of NKp30 may be induced by the chronic engagement of this receptor by B7-H6 expressed on HIV-2-infected target cells. This represents a novel mechanism by which the chronic ligand exposure by the viral environment may subvert NK-cell-mediated function to establish persistent HIV-2 infection.


Assuntos
Antígenos B7/metabolismo , Regulação para Baixo , Infecções por HIV/virologia , HIV-2/patogenicidade , Evasão da Resposta Imune , Células Matadoras Naturais/imunologia , Receptor 3 Desencadeador da Citotoxicidade Natural/biossíntese , Adulto , Feminino , Infecções por HIV/imunologia , Humanos , Masculino , Pessoa de Meia-Idade , Adulto Jovem
9.
Front Immunol ; 9: 2862, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30568659

RESUMO

Viral infections trigger robust secretion of interferons and other antiviral cytokines by infected and bystander cells, which in turn can tune the immune response and may lead to viral clearance or immune suppression. However, aberrant or unrestricted cytokine responses can damage host tissues, leading to organ dysfunction, and even death. To understand the cytokine milieu and immune responses in infected host tissues, non-human primate (NHP) models have emerged as important tools. NHP have been used for decades to study human infections and have played significant roles in the development of vaccines, drug therapies and other immune treatment modalities, aided by an ability to control disease parameters, and unrestricted tissue access. In addition to the genetic and physiological similarities with humans, NHP have conserved immunologic properties with over 90% amino acid similarity for most cytokines. For example, human-like symptomology and acute respiratory syndrome is found in cynomolgus macaques infected with highly pathogenic avian influenza virus, antibody enhanced dengue disease is common in neotropical primates, and in NHP models of viral hepatitis cytokine-induced inflammation induces severe liver damage, fibrosis, and hepatocellular carcinoma recapitulates human disease. To regulate inflammation, anti-cytokine therapy studies in NHP are underway and will provide important insights for future human interventions. This review will provide a comprehensive outline of the cytokine-mediated exacerbation of disease and tissue damage in NHP models of viral infections and therapeutic strategies that can aid in prevention/treatment of the disease syndromes.


Assuntos
Cercopithecidae/imunologia , Citocinas/metabolismo , Hominidae/imunologia , Platirrinos/imunologia , Viroses/imunologia , Animais , Citocinas/imunologia , Modelos Animais de Doenças , Progressão da Doença , Avaliação Pré-Clínica de Medicamentos/métodos , Humanos , Imunoterapia/métodos , Viroses/patologia , Viroses/terapia , Viroses/virologia
10.
EBioMedicine ; 22: 122-132, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28712768

RESUMO

Antibodies (Abs) play a central role in human immunodeficiency virus (HIV) protection due to their multiple functional inhibitory activities. W614A-3S Abs recognize a specific form of a highly conserved motif of the gp41 envelope protein and can elicit viral neutralization to protect CD4+ T cells. Here, we describe in detail the neutralizing profile of W614A-3S Abs in untreated long-term non-progressor (LTNP) HIV-infected patients. W614A-3S Abs were detected in 23.5% (16/68) of untreated LTNP patients compared with <5% (5/104) of HIV-1 progressor patients. The W614A-3S Abs had efficient neutralizing activity that inhibited transmitted founder primary viruses and exhibited Fc-mediated inhibitory functions at low concentrations in primary monocyte-derived macrophages. The neutralizing capacity of W614A-3S Abs was inversely correlated with viral load (r=-0.9013; p<0.0001), viral DNA (r=-0.7696; p=0.0005) and was associated the preservation of high CD4+ T-cell counts and T-cell responses. This study demonstrates that W614A-3S neutralizing Abs may confer a crucial advantage to LTNP patients. These results provide insights for both pathophysiological research and the development of vaccine strategies.


Assuntos
Anticorpos Neutralizantes/metabolismo , Proteína gp41 do Envelope de HIV/imunologia , Infecções por HIV/imunologia , HIV-1/imunologia , Adulto , Contagem de Linfócito CD4 , Linfócitos T CD4-Positivos/citologia , Linfócitos T CD4-Positivos/imunologia , DNA Viral , Feminino , Infecções por HIV/virologia , Sobreviventes de Longo Prazo ao HIV , HIV-1/fisiologia , Humanos , Masculino , Carga Viral
11.
Medicine (Baltimore) ; 95(19): e3678, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-27175704

RESUMO

In the setting of chronic hepatitis C virus (HCV) infection, changes in natural killer (NK) cells have been shown to reflect activation in response to virus stimulation. The contribution of individual natural cytotoxicity receptors to HCV infection remains to be clarified. NKp44 is the sole specific natural cytotoxicity receptor expressed only on activated NK cells.In this study, peripheral blood and liver NK-cell subsets were purified from 31 patients with chronic C hepatitis or nonalcoholic steatohepatitis, and then characterized by flow cytometry. Their polyfunctional activity was determined by expression of the CD107a degranulation marker, together with intracellular cytokine production.Unlike the patients with nonalcoholic steatohepatitis, patients with chronic HCV infection had a higher frequency of NKp44 NK cells in the liver than in their peripheral blood (P < 0.0001). Intrahepatic NKp44 NK cells from HCV individuals produced higher levels of tumor necrosis factor-α than did NKp44 NK cells (P = 0.0011). Importantly, the frequency of intrahepatic NKp44 NK cells was correlated with both HCV-RNA levels (P = 0.0234) and stage of fibrosis (P = 0.0003).Our findings suggest that the accumulation of intrahepatic tumor necrosis factor-α-producing NKp44 resident NK cells play a role in the liver damage associated with chronic HCV infection.


Assuntos
Hepatite C Crônica/sangue , Cirrose Hepática/virologia , Receptor 2 Desencadeador da Citotoxicidade Natural/sangue , Hepatopatia Gordurosa não Alcoólica/sangue , Adulto , Idoso , Feminino , Citometria de Fluxo , Hepacivirus , Hepatite C Crônica/complicações , Hepatite C Crônica/virologia , Humanos , Fígado/patologia , Fígado/virologia , Masculino , Pessoa de Meia-Idade , Hepatopatia Gordurosa não Alcoólica/complicações , Fator de Necrose Tumoral alfa/metabolismo , Carga Viral
12.
Oncotarget ; 7(25): 38946-38958, 2016 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-26950274

RESUMO

The major advances achieved in devising successful combined antiretroviral therapy (cART) have enabled the sustained control of HIV replication. However, this is associated with costly lifelong treatment, partial immune restoration, chronic inflammation and persistent viral reservoirs. In this context, new therapeutic strategies deserve investigation as adjuncts to cART so as to potentiate immune responses that are capable of completely containing HIV pathogenicity, particularly if cART is discontinued. This may seem a dauntingly high hurdle given the results to date. This review outlines the key research efforts that have recently resurrected immunotherapeutic options, and some of the approaches tested to date. These areas include promising cytokines or vaccine strategies, using different viral or non-viral vectors based on polyvalent "mosaic" antigens and highly conserved HIV envelope peptides, broadly neutralizing antibodies or new properties of antibodies to improve the control of immune system homeostasis. These novel immunotherapeutic strategies appear promising per se, or in combination with TLR-agonists in order to bypass the complexity of the interplay between immune activation, massive CD4+ T-cell loss and viral persistence.


Assuntos
Infecções por HIV/imunologia , Infecções por HIV/terapia , Imunoterapia/métodos , Animais , Antirretrovirais/uso terapêutico , Anticorpos Neutralizantes/imunologia , Linfócitos T CD4-Positivos/imunologia , Proteína gp120 do Envelope de HIV/imunologia , HIV-1/imunologia , Humanos , Inflamação , Peptídeos/imunologia , Vacinação , Carga Viral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...