Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
RSC Adv ; 14(22): 15713-15720, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38746834

RESUMO

A chemoselective one-pot synthesis of pharmaceutically prospective indole-pyrrole hybrids by the formal [3 + 2] cycloaddition of 3-cyanoacetyl indoles (CAIs) with 1,2-diaza-1,3-dienes (DDs) has been developed. The new indole-pyrrole hybrids were phenotypically screened for efficacy against Leishmania infantum promastigotes. The most active compounds 3c, 3d, and 3j showed IC50 < 20 µM and moderate cytotoxicity, lower than miltefosine. Compound 3d was the most active with IC50 = 9.6 µM and a selectivity index of 5. Consequently, 3d could be a new lead compound for the generation of a new class of antileishmanial hybrids.

2.
Colloids Surf B Biointerfaces ; 232: 113596, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37918304

RESUMO

Lyotropic Liquid Crystalline (LLC) nanoparticles represent an emerging class of smart, biocompatible, and biodegradable systems for the delivery of drugs. Among these, structures with complex 3D architectures such as cubosomes are of particular interest. These are non- lamellar assemblies having hydrophobic and hydrophilic portions able to carry drugs of different nature. They can further be modulated including suitable additives to control the release of the active payload, and to promote an active targeting. Starting from monoolein (GMO) cubic phase, different concentrations of mannose-based esters were added, and the eventual structural modifications were monitored to ascertain the effects of the presence of glycolipids. Moreover, the structural properties of these nanosystems loaded with Dexamethasone (DEX), a very well-known anti-inflammatory steroid, were also studied. Experiments were carried out by synchrotron Small Angle X-ray Scattering (SAXS), Raman Microspectroscopy (RMS) and Attenuated Total Reflectance-Fourier Transform Infrared (ATR-FTIR) measurements. The drug delivery potential (i.e. entrapment efficiency and release properties) of the obtained nanoparticles was evaluated. Finally, in vitro cytocompatibility and anti-inflammatory activity studies of the prepared formulations were carried out. Inclusion of mannose-based surfactants up to 10 mol% influenced the structural parameters of Im3m cubic phase and swollen cubic phases were obtained with the different glycolipids with lattice parameters significantly higher than GMO. A complete cytocompatibility and an increased DEX activity were observed, thus suggesting the possibility to use GMO/glycolipids nanoparticles to formulate innovative drug delivery systems.


Assuntos
Cristais Líquidos , Manose , Espalhamento a Baixo Ângulo , Difração de Raios X , Sistemas de Liberação de Medicamentos , Anti-Inflamatórios/farmacologia , Glicolipídeos , Cristais Líquidos/química
3.
Antibiotics (Basel) ; 12(10)2023 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-37887201

RESUMO

Glycolipids are biocompatible and biodegradable amphiphilic compounds characterized by a great scientific interest for their potential applications in various technological areas, including pharmaceuticals, cosmetics, agriculture, and food production. This report summarizes the available synthetic methodologies, physicochemical properties, and biological activity of sugar fatty acid ester surfactants, with a particular focus on 6-O-glucose, 6-O-mannose, 6-O-sucrose, and 6'-O-lactose ones. In detail, the synthetic approaches to this class of compounds, such as enzymatic lipase-catalyzed and traditional chemical (e.g., acyl chloride, Steglich, Mitsunobu) esterifications, are reported. Moreover, aspects related to the surface activity of these amphiphiles, such as their ability to decrease surface tension, critical micelle concentration, and emulsifying and foaming ability, are described. Biological applications with a focus on the permeability-enhancing effect across the skin or mucosa, antimicrobial and antifungal activities, as well as antibiofilm properties, are also presented. The information reported here on sugar-based ester surfactants is helpful to broaden the interest and the possible innovative applications of this class of amphiphiles in different technological fields in the future.

4.
Pharmaceuticals (Basel) ; 16(2)2023 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-37259288

RESUMO

A small library of 6-O-sucrose monoester surfactants has been synthesized and tested against various microorganisms. The synthetic procedure involved a modified Mitsunobu reaction, which showed improved results compared to those present in the literature (higher yields and larger scope). The antifungal activities of most of these glycolipids were satisfactory. In particular, sucrose palmitoleate (URB1537) showed good activity against Candida albicans ATCC 10231, Fusarium spp., and Aspergillus fumigatus IDRAH01 (MIC value: 16, 32, 64 µg/mL, respectively), and was further characterized through radical scavenging, anti-inflammatory, and biocompatibility tests. URB1537 has been shown to control the inflammatory response and to have a safe profile.

5.
Pharmaceuticals (Basel) ; 16(2)2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-37259370

RESUMO

The delivery of therapeutics across biological membranes (e.g., mucosal barriers) by avoiding invasive routes (e.g., injection) remains a challenge in the pharmaceutical field. As such, there is the need to discover new compounds that act as drug permeability enhancers with a favorable toxicological profile. A valid alternative is represented by the class of sugar-based ester surfactants. In this study, sucrose and lactose alkyl aromatic and aromatic ester derivatives have been synthesized with the aim to characterize them in terms of their physicochemical properties, structure-property relationship, and cytotoxicity, and to test their ability as permeability enhancer agents across Calu-3 cells. All of the tested surfactants showed no remarkable cytotoxic effect on Calu-3 cells when applied both below and above their critical micelle concentration. Among the explored molecules, lactose p-biphenyl benzoate (URB1420) and sucrose p-phenyl benzoate (URB1481) cause a reversible ~30% decrease in transepithelial electrical resistance (TEER) with the respect to the basal value. The obtained result matches with the increased in vitro permeability coefficients (Papp) calculated for FTIC-dextran across Calu-3 cells in the presence of 4 mM solutions of these surfactants. Overall, this study proposes sucrose- and lactose-based alkyl aromatic and aromatic ester surfactants as novel potential and safe permeation enhancers for pharmaceutical applications.

6.
Pharmaceuticals (Basel) ; 16(2)2023 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-37259386

RESUMO

Indole-3-carbinol (I3C) is a natural product contained in vegetables belonging to the Brassicaceae family and has been studied in recent decades for its biological and pharmacological properties. Herein, we will analyze: (1) the biosynthetic processes and synthetic procedures through which I3C and its main derivatives have been obtained; (2) the characteristics that lead to believe that both I3C and its derivatives are responsible for several important activities-in particular, antitumor and antiviral, through insights concerning in vitro assays and in vivo tests; (3) the mechanisms of action of the most important compounds considered; (4) the potential social impact that the enhancement of the discussed molecules can have in the prevention and treatment of the pathologies' examined field-first of all, those related to respiratory tract disorders and cancer.

7.
Eur J Med Chem ; 243: 114762, 2022 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-36150258

RESUMO

In crystal structures of melatonin MT1 and MT2 receptors, a lipophilic subpocket has been characterized which accommodates the phenyl ring of the potent agonist 2-phenylmelatonin. This subpocket appears a key structural element to achieve high binding affinity and selectivity for the MT2 receptor. A series of 2-arylindole ligands was synthesized to probe the requirements for the optimal occupation and interaction with the 2-phenyl binding pocket. Thermodynamic integration simulations applied to MT1 and MT2 receptors in complex with the α-naphthyl derivative provided a rationale for the MT2-selectivity and investigation on the binding mode of a couple of atropisomers allowed to define the available space and arrangement of substituents inside the subpocket. Interestingly, more hydrophilic 2-aza-substituted compounds displayed high binding affinity and molecular dynamics simulations highlighted polar interaction with residues from the subpocket that could be responsible for their potency.


Assuntos
Melatonina , Receptor MT1 de Melatonina , Receptor MT2 de Melatonina , Ligantes , Melatonina/análogos & derivados , Melatonina/química , Melatonina/metabolismo , Simulação de Dinâmica Molecular , Receptor MT1 de Melatonina/química , Receptor MT1 de Melatonina/metabolismo , Receptor MT2 de Melatonina/química , Receptor MT2 de Melatonina/metabolismo
8.
Chirality ; 34(10): 1279-1297, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35947400

RESUMO

Parasitic diseases, including malaria, leishmaniasis, and trypanosomiasis, affect billions of people and are responsible for almost 500,000 deaths/year. In particular, leishmaniasis, a neglected tropical disease, is considered a global public health problem because current drugs have several drawbacks including to toxicity, high cost, and drug resistance, which result in a lack of effective and readily available therapies. Therefore, the synthesis of new, safe, and effective molecules still requires the attention of the scientific community. Moreover, it is well known that chirality plays a crucial role in the antiparasitic activity of molecules, driving the design of their synthesis. Therefore, in this review we report a recent update on new chiral compounds with promising antileishmanial activity, focusing on synthetic approaches. Where reported, in most cases the enantiopure compound has shown better potency against the protozoa than its enantiomer or corresponding racemic mixture.


Assuntos
Antiprotozoários , Leishmaniose , Antiprotozoários/farmacologia , Antiprotozoários/uso terapêutico , Humanos , Leishmaniose/tratamento farmacológico , Estereoisomerismo
9.
Pharmaceuticals (Basel) ; 15(4)2022 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-35455453

RESUMO

As a follow-up to our previous studies on glycolipid surfactants, a new molecule, that is lactose 6'-O-undecylenate (URB1418), was investigated. To this end, a practical synthesis and studies aimed at exploring its specific properties were carried out. URB1418 showed antifungal activities against Trichophyton rubrum F2 and Candida albicans ATCC 10231 (MIC 512 µg/mL) and no significant antibacterial activity against Staphylococcus aureus and Pseudomonas aeruginosa. At the same time, it presented anti-inflammatory properties, as documented by the dose-dependent reduction in LPS-induced NO release in RAW 264.7 cells, while a low antioxidant capacity in the range of concentrations tested (EC50 > 200 µM) was also observed. Moreover, URB1418 offers the advantage of being more stable than the reference polyunsaturated lactose esters and of being synthesized using a "green" procedure, involving an enzymatic method, high yield and low manufacturing cost. For all these reasons and the absence of toxicity (HaCaT cells), the new glycolipid presented herein could be considered an interesting compound for applications in various fields.

10.
Microsc Res Tech ; 85(7): 2381-2389, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35485998

RESUMO

2,2-bis(6-bromo-1H-indol-3-yl) ethanamine, a marine bisindole alkaloid, showed anticancer property in several tumor cell lines thanks to the presence of a 3,3'-diindolylmethane scaffold. Here, the modifications in its chemical structure into alkaloid-like derivatives, have been evaluated, to investigate changes in its biological activities. Three derivatives have been considered and their potential apoptotic action has been evaluated through morpho-functional analyses in a human cancer cell line. Apoptosis appears strongly decreased in the derivatives without the bromine atoms (1) and in those where the bromine atoms have been substituted with fluorine atoms (2). On the contrary, the methylation of indole NH (3) does not alter the alkaloid apoptotic activity that occurs through mitochondria involvement supported by cardiolipin peroxidation and dysfunctional mitochondria presence. This manuscript highlights the alkaloid derivative cytotoxic effect, which is strictly correlated to the presence of N-methylated bisindole alkaloid and bromine atoms, conditions which assure to maintain the pro-apoptotic activity. Since molecular therapies, by targeting mitochondria pathways, have shown positive outcomes against several cancer cells, the alkaloid with bisindole methylated scaffold and the two bromine atoms can be considered a promising candidate to develop new derivatives with strong anticancer property. RESEARCH HIGHLIGHTS: 2,2-bis(6-bromo-1H-indol-3-yl) ethanamine is an alkaloid known for its anticancer properties. Morpho-functional analyses evaluated cytotoxicity of its synthetic derivatives in tumor cells. Anticancer properties depend on the presence of bisindole scaffold and the two bromine units.


Assuntos
Alcaloides , Antineoplásicos , Alcaloides/farmacologia , Antineoplásicos/farmacologia , Apoptose , Bromo/farmacologia , Linhagem Celular Tumoral , Humanos
11.
Int J Pharm ; 616: 121508, 2022 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-35123002

RESUMO

In recent years, researchers are exploring innovative green materials fabricated from renewable natural substances to meet formulation needs. Among them, biopolymers like chitosans and biosurfactants such as sugar fatty acid esters are of potential interest due to their biocompatibility, biodegradability, functionality, and cost-effectiveness. Both classes of biocompounds possess the ability to be efficiently employed in wound dressing to help physiological wound healing, which is a bioprocess involving uncontrolled oxidative damage and inflammation, with an associated high risk of infection. In this work, we synthesized two different sugar esters (i.e., lactose linoleate and lactose linolenate) that, in combination with chitosan and sucrose laurate, were evaluated in vitro for their cytocompatibility, anti-inflammatory, antioxidant, and antibacterial activities and in vivo as wound care agents. Emphasis on Wnt/ß-catenin associated machineries was also set. The newly designed lactose esters, sucrose ester, and chitosan possessed sole biological attributes, entailing considerable blending for convenient formulation of wound care products. In particular, the mixture composed of sucrose laurate (200 µM), lactose linoleate (100 µM), and chitosan (1%) assured its superiority in terms of efficient wound healing prospects in vivo together with the restoring of the Wnt/ß-catenin signaling pathway, compared with the marketed wound healing product (Healosol®), and single components as well. This innovative combination of biomaterials applied as wound dressing could effectively break new ground in skin wound care.


Assuntos
Quitosana , Antibacterianos , Bandagens , Ésteres , Açúcares , Cicatrização
12.
Pharmaceuticals (Basel) ; 14(12)2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34959706

RESUMO

Glycolipid surfactants are biocompatible and biodegradable compounds characterized by potential applications in various sectors including pharmaceuticals, cosmetics, agriculture, and food production. A specific overview regarding synthetic methodologies and properties of 6'-lactose-based surfactants is presented herein, particularly all the synthetic approaches to this class of lactose esters, such as enzymatic and traditional organic syntheses. Moreover, detailed descriptions of physicochemical data and biocompatibility properties of these molecules, that is, surface tension, critical micelle concentration, emulsifying ability, foaming, particle size distribution, biocompatibility, and safety, are described. Biological applications with a focus on permeability enhancing, antimicrobial activity, and antibiofilm properties of 6'-lactose-based esters are also reported.

13.
J Pharm Biomed Anal ; 205: 114310, 2021 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-34391138

RESUMO

In this study, a rapid liquid chromatography-tandem mass spectrometry (LC-MS/MS) method has been developed and validated for the targeted analysis of 98 New Psychoactive Substances (NPS) from the hair matrix. The monitored compounds included various chemical classes (7 phenethylamines, 10 tryptamines, 18 cathinones, 24 synthetic opioids, and 38 synthetic cannabinoids) with emphasis given to newly emerged NPS. The method employed a direct extraction process through the incubation of hair samples (25 mg) and internal standards with M3® reagent at 100 °C for 60 min, followed by extract purification through acid and basic liquid-liquid micro-extraction (LLME). Extracted compounds were analyzed through LC-MS/MS system operating in multiple reaction monitoring mode. NPS were separated in 9.5 min with a Poroshell 120 EC-C18 column (2.7 µm, 4.6 × 50 mm) using a gradient eluting mobile phase composed of water and acetonitrile/water (95:5) both containing 0.1 % of formic acid. The developed and validated method shows a good precision (≤ 15 %), linearity (R2 between 0.993 and 0.999), selectivity, and sensitivity (LOD: 0.6-10.3 pg mg-1 and LOQ: 2.1-34.4 pg mg-1). The method showed also reduced matrix effect and acceptable recovery for most of the targeted compounds. Our results showed that this method is suitable for quantifying NPS in hair matrix and could be employed in the context of routine analyses in analytical laboratories.


Assuntos
Drogas Ilícitas , Espectrometria de Massas em Tandem , Cromatografia Líquida de Alta Pressão , Cromatografia Líquida , Humanos , Limite de Detecção , Psicotrópicos , Detecção do Abuso de Substâncias
14.
Int J Pharm ; 601: 120593, 2021 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-33857587

RESUMO

Laurate (C12)-sucrose esters are established intestinal epithelial permeation enhancers (PEs) with potential for use in oral delivery. Most studies have examined blends of ester rather than specific monoesters, with little variation on the sugar moiety. To investigate the influence of varying the sugar moiety on monoester performance, we compared three monoesters: C12-sucrose, C12-lactose, and C12-trehalose. The assays were: critical micellar concentration (CMC) in Krebs-Henseleit buffer, MTS and lactate dehydrogenase assays in Caco-2 cells, transepithelial electrical resistance (TEER) and apparent permeability coefficient (Papp) of [14C] mannitol across isolated rat intestinal mucosae, and tissue histology. For CMC, the rank order was C12-trehalose (0.21 mM) < C12-sucrose (0.34 mM) < C12-lactose (0.43 mM). Exposure to Caco-2 cells for 120 min produced TC50 values in the MTS assay from 0.1 to 0.4 mM. Each ester produced a concentration-dependent decrease in TEER across rat mucosae with 80% reduction seen with 8 mM in 5 min, but C12-trehalose was less potent. C12-sucrose and C12-lactose increased the Papp of [14C] mannitol across mucosae with similar potency and efficacy, whereas C12-trehalose was not as potent or efficacious, even though it still increased flux. In the presence of the three esters, gross intestinal histology was unaffected except at 8 mM for C12-sucrose and C12-lactose. In conclusion, the three esters enhanced permeability likely via tight junction modulation in rat intestinal tissue. C12-trehalose was not quite as efficacious, but neither did it damage tissue to the same extent. All three can be considered as potential PEs to be included in oral formulations.


Assuntos
Absorção Intestinal , Lauratos , Animais , Células CACO-2 , Dissacarídeos , Humanos , Mucosa Intestinal/metabolismo , Permeabilidade , Ratos , Ratos Wistar
15.
ACS Omega ; 6(51): 35699-35710, 2021 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-34984300

RESUMO

We report the evaluation of a small library of azole-bisindoles for their antileishmanial potential, in terms of efficacy on Leishmania infantum promastigotes and intracellular amastigotes. Nine compounds showed good activity on L. infantum MHOM/TN/80/IPT1 promastigotes with IC50 values ranging from 4 to 10 µM. These active compounds were also tested on human (THP-1, HEPG2, HaCaT, and human primary fibroblasts) and canine (DH82) cell lines. URB1483 was selected as the best compound, with no quantifiable cytotoxicity in mammalian cells, to test the efficacy on intracellular amastigotes. URB1483 significantly reduced the infection index of both human and canine macrophages with an effect comparable to the clinically used drug pentamidine. URB1483 emerges as a new anti-infective agent with remarkable antileishmanial activity and no cytotoxic effects on human and canine cells.

16.
Pharmaceuticals (Basel) ; 13(9)2020 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-32859056

RESUMO

Methicillin resistant Staphylococcus aureus (MRSA) infections represent a major global healthcare problem. Therapeutic options are often limited by the ability of MRSA strains to grow as biofilms on medical devices, where antibiotic persistence and resistance is positively selected, leading to recurrent and chronic implant-associated infections. One strategy to circumvent these problems is the co-administration of adjuvants, which may prolong the efficacy of antibiotic treatments, by broadening their spectrum and lowering the required dosage. The marine bisindole alkaloid 2,2-bis(6-bromo-1H-indol-3-yl)ethanamine (1) and its fluorinated analogue (2) were tested for their potential use as antibiotic adjuvants and antibiofilm agents against S. aureus CH 10850 (MRSA) and S. aureus ATCC 29213 (MSSA). Both compounds showed antimicrobial activity and bisindole 2 enabled 256-fold reduction (ΣFICs = 0.5) in the minimum inhibitory concentration (MIC) of oxacillin for the clinical MRSA strain. In addition, these molecules inhibited biofilm formation of S. aureus strains, and compound 2 showed greater eradicating activity on preformed biofilm compared to 1. None of the tested molecules exerted a viable but non-culturable cells (VBNC) inducing effect at their MIC values. Moreover, both compounds exhibited no hemolytic activity and a good stability in plasma, indicating a non-toxic profile, hence, in particular compound 2, a potential for in vivo applications to restore antibiotic treatment against MRSA infections.

17.
Pharmaceuticals (Basel) ; 13(8)2020 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-32824527

RESUMO

A practical and robust synthetic method to obtain the natural disaccharide sambubiose (2-O-ß-D-xylopyranosyl-D-glucopyranose) is reported, exploring the key step in the synthesis, i.e., stereoselective O-glycosylation. Specifically, the best combinations of glycoside donors and acceptors were identified, stereospecific control of the reaction was achieved by screening several catalysts and protection/deprotection steps were evaluated and improved. The best result was obtained by coupling allyl 3,5,6-tri-O-benzyl-ß-D-glucofuranoside with 2,3,4-tri-O-acetyl-D-xylopiranosyl-α-trichloro acetimidate in the presence of trimethylsilyl triflate as a catalyst giving the corresponding protected target compound as a correct single isomer. The latter was transformed accordingly into the desired final product by deprotection steps (deallylation, deacetylation, and debenzylation). Sambubiose was synthesized into a satisfactory and higher overall yield than previously reported and was also characterized.

18.
J Mass Spectrom ; 55(11): e4607, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32677749

RESUMO

Two organic acids isomers, 3-isopropylmalic acid (3-IPMA) and 2-isopropylmalic acid (2-IPMA), were identified and quantified in wine samples by using an LC-MS/MS method without any chromatographic separation, but processing the MS/MS data with a recently developed deconvolution algorithm (LEDA: linear equations deconvolution analysis), thus decreasing the time necessary for the process. In particular, the LEDA tool processes the MS/MS signals and assigns the relative concentrations (abundances) of the isomers in the sample, at the mg L-1 level. The efficiency of MS/MS signal assignment was improved by introducing five linear equations to define the LEDA matrix. Then, as a novel approach, an overdetermined system of linear equations was applied for the deconvolution of isomers. The use of LEDA to identify and quantify the isomers in wine samples, together with the choice of a short LC column and a fast elution gradient, simplifies the process and shortens the time needed. Furthermore, it was evaluated the quantitative determination of the IPMA isomers by using the calibration curve provided by the precursor ion MRM transition data. The calculated values of accuracy (recovery between 82.6% and 99.8%) and precision (RSD between 0.4% and 4.0%) confirm the validity of this quantitative approach and the ability of LEDA to establish the correct percentage of the MS/MS signal for each isomer. Finally, to compare the conventional LC-MS/MS method and our proposed method of LC-MS/MS coupled with LEDA post-processing elaboration, a series of real wine samples were analysed by both methods, and the results were compared.

19.
Food Chem ; 321: 126726, 2020 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-32259735

RESUMO

2-Isopropylmalic acid (2-IPMA) and 3-isopropylmalic acid (3-IPMA), recently discovered in wines, were simultaneously quantified in forty wines by UHPLC-MS/MS triple quadrupole. Principal component analysis displayed that red wines were more correlated with high amounts of 2-IPMA (average content 31.60 mg/L); white wines were mostly characterized by low levels of both organic acids. No correlation of theirs levels to other wine features (wine ageing or alcoholic content) were found. 2-IPMA and 3-IPMA showed MICs values of 4096 mg/L and MBCs values of 8192 mg/L or higher against several food borne pathogens. In association, an interesting lower MIC and MBC values (2048 mg/L and 4096 mg/L respectively) were observed against Y. enterocolitica. Interestingly, 3-IPMA showed a mild antioxidant activity by DPPH assay (EC50 = 3940 mg/L), higher than that of 2-IPMA (EC50 > 4800 mg/L). No toxicity of these compounds against human colorectal and liver cells (TB assay) was observed.


Assuntos
Anti-Infecciosos/farmacologia , Antioxidantes/farmacologia , Análise de Alimentos/métodos , Malatos/análise , Vinho/análise , Anti-Infecciosos/análise , Antioxidantes/análise , Células CACO-2 , Cromatografia Líquida de Alta Pressão , Células Hep G2 , Humanos , Itália , Malatos/farmacologia , Testes de Sensibilidade Microbiana , Espectrometria de Massas em Tandem , Testes de Toxicidade
20.
Pharmaceuticals (Basel) ; 12(4)2019 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-31861227

RESUMO

A small library of sugar-based (i.e., glucose, mannose and lactose) monoesters containing hydrophobic aliphatic or aromatic tails were synthesized and tested. The antimicrobial activity of the compounds against a target panel of Gram-positive, Gram-negative and fungi was assessed. Based on this preliminary screening, the antibiofilm activity of the most promising molecules was evaluated at different development times of selected food-borne pathogens (E. coli, L. monocytogenes, S. aureus, S. enteritidis). The antibiofilm activity during biofilm formation resulted in the following: mannose C10 > lactose biphenylacetate > glucose C10 > lactose C10. Among them, mannose C10 and lactose biphenylacetate showed an inhibition for E. coli 97% and 92%, respectively. At MICs values, no toxicity was observed on Caco-2 cell line for all the examined compounds. Overall, based on these results, all the sugar-based monoesters showed an interesting profile as safe antimicrobial agents. In particular, mannose C10 and lactose biphenylacetate are the most promising as possible biocompatible and safe preservatives for pharmaceutical and food applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...