Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
J. physiol. biochem ; 78(1): 283-294, feb. 2022.
Artigo em Inglês | IBECS | ID: ibc-215889

RESUMO

Typically, healthy cardiac tissue utilizes more fat than any other organ. Cardiac hypertrophy induces a metabolic shift leading to a preferential consumption of glucose over fatty acids to support the high energetic demand. Calorie restriction is a dietary procedure that induces health benefits and lifespan extension in many organisms. Given the beneficial effects of calorie restriction, we hypothesized that calorie restriction prevents cardiac hypertrophy, lipid content changes, mitochondrial and redox dysregulation. Strikingly, calorie restriction reversed isoproterenol-induced cardiac hypertrophy. Isolated mitochondria from hypertrophic hearts produced significantly higher levels of succinate-driven H2O2 production, which was blocked by calorie restriction. Cardiac hypertrophy lowered mitochondrial respiratory control ratios, and decreased superoxide dismutase and glutathione peroxidase levels. These effects were also prevented by calorie restriction. We performed lipidomic profiling to gain insights into how calorie restriction could interfere with the metabolic changes induced by cardiac hypertrophy. Calorie restriction protected against the consumption of several triglycerides (TGs) linked to unsaturated fatty acids. Also, this dietary procedure protected against the accumulation of TGs containing saturated fatty acids observed in hypertrophic samples. Cardiac hypertrophy induced an increase in ceramides, phosphoethanolamines, and acylcarnitines (12:0, 14:0, 16:0, and 18:0). These were all reversed by calorie restriction. Altogether, our data demonstrate that hypertrophy changes the cardiac lipidome, causes mitochondrial disturbances, and oxidative stress. These changes are prevented (at least partially) by calorie restriction intervention in vivo. This study uncovers the potential for calorie restriction to become a new therapeutic intervention against cardiac hypertrophy, and mechanisms in which it acts. (AU)


Assuntos
Humanos , Restrição Calórica , Metabolômica , Cardiomegalia , Peróxido de Hidrogênio , Isoproterenol , Mitocôndrias , Estresse Oxidativo
2.
J Physiol Biochem ; 78(1): 283-294, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35023023

RESUMO

Typically, healthy cardiac tissue utilizes more fat than any other organ. Cardiac hypertrophy induces a metabolic shift leading to a preferential consumption of glucose over fatty acids to support the high energetic demand. Calorie restriction is a dietary procedure that induces health benefits and lifespan extension in many organisms. Given the beneficial effects of calorie restriction, we hypothesized that calorie restriction prevents cardiac hypertrophy, lipid content changes, mitochondrial and redox dysregulation. Strikingly, calorie restriction reversed isoproterenol-induced cardiac hypertrophy. Isolated mitochondria from hypertrophic hearts produced significantly higher levels of succinate-driven H2O2 production, which was blocked by calorie restriction. Cardiac hypertrophy lowered mitochondrial respiratory control ratios, and decreased superoxide dismutase and glutathione peroxidase levels. These effects were also prevented by calorie restriction. We performed lipidomic profiling to gain insights into how calorie restriction could interfere with the metabolic changes induced by cardiac hypertrophy. Calorie restriction protected against the consumption of several triglycerides (TGs) linked to unsaturated fatty acids. Also, this dietary procedure protected against the accumulation of TGs containing saturated fatty acids observed in hypertrophic samples. Cardiac hypertrophy induced an increase in ceramides, phosphoethanolamines, and acylcarnitines (12:0, 14:0, 16:0, and 18:0). These were all reversed by calorie restriction. Altogether, our data demonstrate that hypertrophy changes the cardiac lipidome, causes mitochondrial disturbances, and oxidative stress. These changes are prevented (at least partially) by calorie restriction intervention in vivo. This study uncovers the potential for calorie restriction to become a new therapeutic intervention against cardiac hypertrophy, and mechanisms in which it acts.


Assuntos
Restrição Calórica , Lipidômica , Cardiomegalia/induzido quimicamente , Cardiomegalia/tratamento farmacológico , Cardiomegalia/prevenção & controle , Humanos , Peróxido de Hidrogênio/metabolismo , Isoproterenol/metabolismo , Isoproterenol/toxicidade , Mitocôndrias/metabolismo , Oxirredução , Estresse Oxidativo
3.
Curr Mol Pharmacol ; 13(1): 76-83, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31340743

RESUMO

BACKGROUND: Cardiac hypertrophy involves marked wall thickening or chamber enlargement. If sustained, this condition will lead to dysfunctional mitochondria and oxidative stress. Mitochondria have ATP-sensitive K+ channels (mitoKATP) in the inner membrane that modulate the redox status of the cell. OBJECTIVE: We investigated the in vivo effects of mitoKATP opening on oxidative stress in isoproterenol- induced cardiac hypertrophy. METHODS: Cardiac hypertrophy was induced in Swiss mice treated intraperitoneally with isoproterenol (ISO - 30 mg/kg/day) for 8 days. From day 4, diazoxide (DZX - 5 mg/kg/day) was used in order to open mitoKATP (a clinically relevant therapy scheme) and 5-hydroxydecanoate (5HD - 5 mg/kg/day) or glibenclamide (GLI - 3 mg/kg/day) were used as mitoKATP blockers. RESULTS: Isoproterenol-treated mice had elevated heart weight/tibia length ratios (HW/TL). Additionally, hypertrophic hearts had elevated levels of carbonylated proteins and Thiobarbituric Acid Reactive Substances (TBARS), markers of protein and lipid oxidation. In contrast, mitoKATP opening with DZX avoided ISO effects on gross hypertrophic markers (HW/TL), carbonylated proteins and TBARS, in a manner reversed by 5HD and GLI. Moreover, DZX improved mitochondrial superoxide dismutase activity. This effect was also blocked by 5HD and GLI. Additionally, ex vivo treatment of isoproterenol- induced hypertrophic cardiac tissue with DZX decreased H2O2 production in a manner sensitive to 5HD, indicating that this drug also acutely avoids oxidative stress. CONCLUSION: Our results suggest that diazoxide blocks oxidative stress and reverses cardiac hypertrophy. This pharmacological intervention could be a potential therapeutic strategy to prevent oxidative stress associated with cardiac hypertrophy.


Assuntos
Cardiomegalia/tratamento farmacológico , Diazóxido/uso terapêutico , Peróxido de Hidrogênio/metabolismo , Canais de Potássio/efeitos dos fármacos , Superóxido Dismutase/metabolismo , Animais , Cardiomegalia/induzido quimicamente , Cardiomegalia/metabolismo , Diazóxido/farmacologia , Avaliação Pré-Clínica de Medicamentos , Transporte de Íons/efeitos dos fármacos , Isoproterenol/toxicidade , Camundongos , Estresse Oxidativo/efeitos dos fármacos , Potássio/metabolismo , Carbonilação Proteica/efeitos dos fármacos , Substâncias Reativas com Ácido Tiobarbitúrico/análise
4.
J Nutr Biochem ; 62: 87-94, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30286377

RESUMO

Oxidative stress has been implicated in the pathogenesis of cardiac hypertrophy and associated heart failure. Cardiac tissue grows in response to pressure or volume overload, leading to wall thickening or chamber enlargement. If sustained, this condition will lead to a dysfunctional cardiac tissue and oxidative stress. Calorie restriction (CR) is a powerful intervention to improve health and delay aging. Here, we investigated whether calorie restriction in mice prevented isoproterenol-induced cardiac hypertrophy in vivo by avoiding reactive oxygen species (ROS) production and maintaining antioxidant enzymatic activity. Additionally, we investigated the involvement of mitochondrial ATP-sensitive K+ channels (mitoKATP) in cardiac hypertrophy. CR was induced by 40% reduction in daily calorie ingestion. After 3 weeks on CR or ad libitum (Control) feeding, Swiss mice were treated intraperitoneally with isoproterenol (30 mg/kg per day) for 8 days to induce hypertrophy. Isoproterenol-treated mice had elevated heart weight/tibia length ratios and cardiac protein levels. These gross hypertrophic markers were significantly reduced in CR mice. Cardiac tissue from isoproterenol-treated CR mice also produced less H2O2 and had lower protein sulfydryl oxidation. Additionally, calorie restriction blocked hypertrophic-induced antioxidant enzyme (catalase, superoxide dismutase and glutathione peroxidase) activity repression during cardiac hypertrophy. MitoKATP opening was repressed in isolated mitochondria from hypertrophic hearts, in a manner sensitive to calorie restriction. Finally, mitoKATP inhibition significantly blocked the protective effects of calorie restriction. Altogether, our results suggest that CR improves intracellular redox balance during cardiac hypertrophy and prevents this process in a mechanism involving mitoKATP activation.


Assuntos
Restrição Calórica , Cardiomegalia/dietoterapia , Canais de Potássio/metabolismo , Animais , Antioxidantes/metabolismo , Cardiomegalia/induzido quimicamente , Cardiomegalia/metabolismo , Enzimas/metabolismo , Glibureto/farmacologia , Peróxido de Hidrogênio/metabolismo , Isoproterenol/efeitos adversos , Masculino , Camundongos , Estresse Oxidativo , Bloqueadores dos Canais de Potássio/farmacologia , Espécies Reativas de Oxigênio/metabolismo
5.
Adv Exp Med Biol ; 982: 203-226, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28551789

RESUMO

Cardiac tissue responds to long-term hemodynamic load through initiation of a hypertrophic remodeling program. Importantly, if not counteracted this response will eventually lead to organ failure. Cardiac hypertrophic adaptations are complex, and involve multiple cellular events and the mechanisms underlying the development of cardiac hypertrophy are not well understood. Mitochondrial dysfunction has been indicated as a potential and important player in the development of cardiac hypertrophy. Additionally, substantial evidence shows that a significant portion of mitochondrial processes, necessary for normal cardiomyocyte physiology, are impacted by these hypertrophic changes. In this chapter, we will present and discuss the adaptations and changes in the mitochondrial electron transport system, mitochondrial metabolism, mitochondrial biogenesis, oxidative stress, the opening of the mitochondrial permeability transition pore following hypertrophic stimuli, as well as, review the various drugs (targeting mitochondria) that can be used in treatment of cardiac hypertrophy.


Assuntos
Sinalização do Cálcio , Cálcio/metabolismo , Cardiomegalia/metabolismo , Metabolismo Energético , Mitocôndrias Cardíacas/metabolismo , Miócitos Cardíacos/metabolismo , Animais , Cardiomegalia/patologia , Cardiomegalia/fisiopatologia , Humanos , Mitocôndrias Cardíacas/patologia , Dinâmica Mitocondrial , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Poro de Transição de Permeabilidade Mitocondrial , Miócitos Cardíacos/patologia , Biogênese de Organelas , Estresse Oxidativo
6.
Drug Des Devel Ther ; 9: 3067-72, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26109849

RESUMO

BACKGROUND: The search for new active compounds from the Brazilian flora has intensified in recent years, especially for new drugs with antibiotic potential. Accordingly, the aim of this study was to determine whether riachin has antibiotic activity in itself or is able to modulate the activity of conventional antibiotics. METHODS: A non-cyanogenic cyanoglycoside known as riachin was isolated from Bauhinia pentandra, and was tested alone and in combination with three antibiotics (clindamycin, amikacin, and gentamicin) against multiresistant bacterial strains (Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus aureus). RESULTS: Riachin did not show significant antibiotic activity when tested alone against any strain (P>0.05). However, when combined with conventional antibiotics, it showed drug-modifying activity against strains of S. aureus exposed to clindamycin (P<0.001) as well as against P. aeruginosa exposed to amikacin (P<0.001). Although riachin did not show direct antibiotic activity, it had synergistic activity when combined with amikacin or clindamycin. The mechanism of action of this synergism is under investigation. CONCLUSION: The results of this work demonstrate that some substances of natural origin can enhance the effectiveness of certain antibiotics, which means a substantial reduction in the drug dose required and possibly in consequent adverse events for patients.


Assuntos
Acrilonitrila/análogos & derivados , Antibacterianos/farmacologia , Bauhinia/química , Glucosídeos/farmacologia , Extratos Vegetais/farmacologia , Acrilonitrila/farmacologia , Farmacorresistência Bacteriana Múltipla/efeitos dos fármacos , Sinergismo Farmacológico , Escherichia coli/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Pseudomonas aeruginosa/efeitos dos fármacos , Staphylococcus aureus/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...