Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
MMWR Morb Mortal Wkly Rep ; 72(49): 1315-1320, 2023 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-38060434

RESUMO

Legionnaires disease is a serious infection acquired by inhalation of water droplets from human-made building water systems that contain Legionella bacteria. On July 11 and 12, 2022, Napa County Public Health (NCPH) in California received reports of three positive urinary antigen tests for Legionella pneumophila serogroup 1 in the town of Napa. By July 21, six Legionnaires disease cases had been confirmed among Napa County residents, compared with a baseline of one or two cases per year. NCPH requested assistance from the California Department of Public Health (CDPH) and CDC to aid in the investigations. Close temporal and geospatial clustering permitted a focused environmental sampling strategy of high-risk facilities which, coupled with whole genome sequencing results from samples and investigation of water system maintenance, facilitated potential linking of the outbreak with an environmental source. NCPH, with technical support from CDC and CDPH, instructed and monitored remediation practices for all environmental locations that tested positive for Legionella. The investigation response to this community outbreak illustrates the importance of interdisciplinary collaboration by public health agencies, laboratory support, timely communication with the public, and cooperation of managers of potentially implicated water systems. Timely identification of possible sources, sampling, and remediation of any facility testing positive for Legionella is crucial to interrupting further transmission.


Assuntos
Legionella pneumophila , Legionella , Doença dos Legionários , Humanos , Doença dos Legionários/diagnóstico , Doença dos Legionários/epidemiologia , Surtos de Doenças , Microbiologia da Água , California/epidemiologia , Água
3.
Infect Genet Evol ; 59: 172-185, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29427765

RESUMO

The majority of Legionnaires' disease (LD) cases are caused by Legionella pneumophila, a genetically heterogeneous species composed of at least 17 serogroups. Previously, it was demonstrated that L. pneumophila consists of three subspecies: pneumophila, fraseri and pascullei. During an LD outbreak investigation in 2012, we detected that representatives of both subspecies fraseri and pascullei colonized the same water system and that the outbreak-causing strain was a new member of the least represented subspecies pascullei. We used partial sequence based typing consensus patterns to mine an international database for additional representatives of fraseri and pascullei subspecies. As a result, we identified 46 sequence types (STs) belonging to subspecies fraseri and two STs belonging to subspecies pascullei. Moreover, a recent retrospective whole genome sequencing analysis of isolates from New York State LD clusters revealed the presence of a fourth L. pneumophila subspecies that we have termed raphaeli. This subspecies consists of 15 STs. Comparative analysis was conducted using the genomes of multiple members of all four L. pneumophila subspecies. Whereas each subspecies forms a distinct phylogenetic clade within the L. pneumophila species, they share more average nucleotide identity with each other than with other Legionella species. Unique genes for each subspecies were identified and could be used for rapid subspecies detection. Improved taxonomic classification of L. pneumophila strains may help identify environmental niches and virulence attributes associated with these genetically distinct subspecies.


Assuntos
Genoma Bacteriano/genética , Legionella pneumophila/genética , Doença dos Legionários/microbiologia , Hibridização Genômica Comparativa , Infecção Hospitalar/microbiologia , DNA Bacteriano/genética , Surtos de Doenças , Humanos , Filogenia , Polimorfismo de Nucleotídeo Único/genética
4.
PLoS One ; 12(12): e0189937, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29261791

RESUMO

Cooling towers (CTs) are a leading source of outbreaks of Legionnaires' disease (LD), a severe form of pneumonia caused by inhalation of aerosols containing Legionella bacteria. Accordingly, proper maintenance of CTs is vital for the prevention of LD. The aim of this study was to determine the distribution of Legionella in a subset of regionally diverse US CTs and characterize the associated microbial communities. Between July and September of 2016, we obtained aliquots from water samples collected for routine Legionella testing from 196 CTs located in eight of the nine continental US climate regions. After screening for Legionella by PCR, positive samples were cultured and the resulting Legionella isolates were further characterized. Overall, 84% (164) were PCR-positive, including samples from every region studied. Of the PCR-positive samples, Legionella spp were isolated from 47% (78), L. pneumophila was isolated from 32% (53), and L. pneumophila serogroup 1 (Lp1) was isolated from 24% (40). Overall, 144 unique Legionella isolates were identified; 53% (76) of these were Legionella pneumophila. Of the 76 L. pneumophila isolates, 51% (39) were Lp1. Legionella were isolated from CTs in seven of the eight US regions examined. 16S rRNA amplicon sequencing was used to compare the bacterial communities of CT waters with and without detectable Legionella as well as the microbiomes of waters from different climate regions. Interestingly, the microbial communities were homogenous across climate regions. When a subset of seven CTs sampled in April and July were compared, there was no association with changes in corresponding CT microbiomes over time in the samples that became culture-positive for Legionella. Legionella species and Lp1 were detected frequently among the samples examined in this first large-scale study of Legionella in US CTs. Our findings highlight that, under the right conditions, there is the potential for CT-related LD outbreaks to occur throughout the US.


Assuntos
Legionella/fisiologia , Microbiologia da Água , Biodiversidade , Clima , DNA Bacteriano/isolamento & purificação , Geografia , Microbiota , Filogenia , Reação em Cadeia da Polimerase , Estações do Ano , Estados Unidos/epidemiologia
5.
Infect Control Hosp Epidemiol ; 38(3): 306-313, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-27919312

RESUMO

OBJECTIVES To define the scope of an outbreak of Legionnaires' disease (LD), to identify the source, and to stop transmission. DESIGN AND SETTING Epidemiologic investigation of an LD outbreak among patients and a visitor exposed to a newly constructed hematology-oncology unit. METHODS An LD case was defined as radiographically confirmed pneumonia in a person with positive urinary antigen testing and/or respiratory culture for Legionella and exposure to the hematology-oncology unit after February 20, 2014. Cases were classified as definitely or probably healthcare-associated based on whether they were exposed to the unit for all or part of the incubation period (2-10 days). We conducted an environmental assessment and collected water samples for culture. Clinical and environmental isolates were compared by monoclonal antibody (MAb) and sequence-based typing. RESULTS Over a 12-week period, 10 cases were identified, including 6 definite and 4 probable cases. Environmental sampling revealed Legionella pneumophila serogroup 1 (Lp1) in the potable water at 9 of 10 unit sites (90%), including all patient rooms tested. The 3 clinical isolates were identical to environmental isolates from the unit (MAb2-positive, sequence type ST36). No cases occurred with exposure after the implementation of water restrictions followed by point-of-use filters. CONCLUSIONS Contamination of the unit's potable water system with Lp1 strain ST36 was the likely source of this outbreak. Healthcare providers should routinely test patients who develop pneumonia at least 2 days after hospital admission for LD. A single case of LD that is definitely healthcare associated should prompt a full investigation. Infect Control Hosp Epidemiol 2017;38:306-313.


Assuntos
Infecção Hospitalar/etiologia , Surtos de Doenças , Água Potável/microbiologia , Doença dos Legionários/diagnóstico , Doença dos Legionários/transmissão , Adulto , Idoso , Idoso de 80 Anos ou mais , Alabama , Infecção Hospitalar/microbiologia , Feminino , Hematologia , Humanos , Legionella pneumophila/classificação , Legionella pneumophila/isolamento & purificação , Masculino , Pessoa de Meia-Idade , Serviço Hospitalar de Oncologia , Microbiologia da Água
6.
Genome Announc ; 4(3)2016 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-27151801

RESUMO

Here, we report the complete genome sequences of three Legionella pneumophila subsp. pascullei strains (including both serogroup 1 and 5 strains) that were found in the same health care facility in 1982 and 2012.

7.
Appl Environ Microbiol ; 82(12): 3582-3590, 2016 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-27060122

RESUMO

UNLABELLED: A total of 30 Legionella pneumophila serogroup 1 isolates representing 10 separate legionellosis laboratory investigations ("outbreaks") that occurred in New York State between 2004 and 2012 were selected for evaluation of whole-genome sequencing (WGS) approaches for molecular subtyping of this organism. Clinical and environmental isolates were available for each outbreak and were initially examined by pulsed-field gel electrophoresis (PFGE). Sequence-based typing alleles were extracted from WGS data yielding complete sequence types (ST) for isolates representing 8 out of the 10 outbreaks evaluated in this study. Isolates from separate outbreaks sharing the same ST also contained the fewest differences in core genome single nucleotide polymorphisms (SNPs) and the greatest proportion of identical allele sequences in a whole-genome multilocus sequence typing (wgMLST) scheme. Both core SNP and wgMLST analyses distinguished isolates from separate outbreaks, including those from two outbreaks sharing indistinguishable PFGE profiles. Isolates from a hospital-associated outbreak spanning multiple years shared indistinguishable PFGE profiles but displayed differences in their genome sequences, suggesting the presence of multiple environmental sources. Finally, the rtx gene demonstrated differences in the repeat region sequence among ST1 isolates from different outbreaks, suggesting that variation in this gene may be useful for targeted molecular subtyping approaches for L. pneumophila This study demonstrates the utility of various genome sequence analysis approaches for L. pneumophila for environmental source attribution studies while furthering the understanding of Legionella ecology. IMPORTANCE: We demonstrate that whole-genome sequencing helps to improve resolution of Legionella pneumophila isolated during laboratory investigations of legionellosis compared to traditional subtyping methods. These data can be important in confirming the environmental sources of legionellosis outbreaks. Moreover, we evaluated various methods to analyze genome sequence data to help resolve outbreak-related isolates.


Assuntos
Surtos de Doenças , Genótipo , Legionella pneumophila/classificação , Doença dos Legionários/epidemiologia , Doença dos Legionários/microbiologia , Tipagem Molecular/métodos , Sorogrupo , Genoma Bacteriano , Genômica/métodos , Humanos , Legionella pneumophila/genética , Legionella pneumophila/isolamento & purificação , Epidemiologia Molecular/métodos , New York/epidemiologia
9.
Clin Infect Dis ; 60(11): 1596-602, 2015 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-25722201

RESUMO

BACKGROUND: Healthcare-associated Legionnaires' disease (LD) is a preventable pneumonia with a 30% case fatality rate. The Centers for Disease Control and Prevention guidelines recommend a high index of suspicion for the diagnosis of healthcare-associated LD. We characterized an outbreak and evaluated contributing factors in a hospital using copper-silver ionization for prevention of Legionella growth in water. METHODS: Through medical records review at a large, urban tertiary care hospital in November 2012, we identified patients diagnosed with LD during 2011-2012. Laboratory-confirmed cases were categorized as definite, probable, and not healthcare associated based on time spent in the hospital during the incubation period. We performed an environmental assessment of the hospital, including collection of samples for Legionella culture. Clinical and environmental isolates were compared by genotyping. Copper and silver ion concentrations were measured in 11 water samples. RESULTS: We identified 5 definite and 17 probable healthcare-associated LD cases; 6 case patients died. Of 25 locations (mostly potable water) where environmental samples were obtained for Legionella-specific culture, all but 2 showed Legionella growth; 11 isolates were identical to 3 clinical isolates by sequence-based typing. Mean copper and silver concentrations were at or above the manufacturer's recommended target for Legionella control. Despite this, all samples where copper and silver concentrations were tested showed Legionella growth. CONCLUSIONS: This outbreak was linked to the hospital's potable water system and highlights the importance of maintaining a high index of suspicion for healthcare-associated LD, even in the setting of a long-term disinfection program.


Assuntos
Infecção Hospitalar/epidemiologia , Surtos de Doenças , Desinfecção/métodos , Monitoramento Epidemiológico , Doença dos Legionários/epidemiologia , Idoso , Idoso de 80 Anos ou mais , Infecção Hospitalar/diagnóstico , Humanos , Controle de Infecções/métodos , Doença dos Legionários/diagnóstico , Pessoa de Meia-Idade , Pennsylvania/epidemiologia , Centros de Atenção Terciária
10.
J Clin Microbiol ; 52(1): 201-11, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24197883

RESUMO

Since the establishment of sequence-based typing as the gold standard for DNA-based typing of Legionella pneumophila, the Legionella laboratory at the Centers for Disease Control and Prevention (CDC) has conducted routine sequence-based typing (SBT) analysis of all incoming L. pneumophila serogroup 1 (Lp1) isolates to identify potential links between cases and to better understand genetic diversity and clonal expansion among L. pneumophila bacteria. Retrospective genotyping of Lp1 isolates from sporadic cases and Legionnaires' disease (LD) outbreaks deposited into the CDC reference collection since 1982 has been completed. For this study, we compared the distribution of sequence types (STs) among Lp1 isolates implicated in 26 outbreaks in the United States, 571 clinical isolates from sporadic cases of LD in the United States, and 149 environmental isolates with no known association with LD. The Lp1 isolates under study had been deposited into our collection between 1982 and 2012. We identified 17 outbreak-associated STs, 153 sporadic STs, and 49 environmental STs. We observed that Lp1 STs from outbreaks and sporadic cases are more similar to each other than either group is to environmental STs. The most frequent ST for both sporadic and environmental isolates was ST1, accounting for 25% and 49% of the total number of isolates, respectively. The STs shared by both outbreak-associated and sporadic Lp1 included ST1, ST35, ST36, ST37, and ST222. The STs most commonly found in sporadic and outbreak-associated Lp1 populations may have an increased ability to cause disease and thus may require special attention when detected.


Assuntos
Microbiologia Ambiental , Legionella pneumophila/classificação , Legionella pneumophila/genética , Doença dos Legionários/epidemiologia , Doença dos Legionários/microbiologia , Tipagem Molecular , Surtos de Doenças , Feminino , Genótipo , Humanos , Legionella pneumophila/isolamento & purificação , Masculino , Epidemiologia Molecular , Prevalência , Estados Unidos/epidemiologia
11.
Methods Mol Biol ; 954: 3-25, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23150387

RESUMO

Legionella is ubiquitous in freshwater systems worldwide and can also be found in soil. Legionellosis may be caused by inhalation of aerosolized water or soil particles containing Legionella. Isolation of Legionella from the environment is an essential step in outbreak investigation and may also be performed within the context of a hazard analysis and control risk management plan. Culture remains the gold standard for detection of Legionella in environmental samples. Specific properties of environmental sites that could be a source of Legionella contamination, collection of samples from such sites, and procedures for culture of these samples for Legionella are described in this chapter.


Assuntos
Monitoramento Ambiental/métodos , Legionella/isolamento & purificação , Biofilmes , Legionella/fisiologia , Microbiologia do Solo , Manejo de Espécimes/métodos , Microbiologia da Água
12.
Int J Microbiol ; 2012: 218791, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22287969

RESUMO

Members of the Gram-negative genus Legionella are typically found in freshwater environments, with the exception of L. longbeachae, which is present in composts and potting mixes. When contaminated aerosols are inhaled, legionellosis may result, typically as either the more serious pneumonia Legionnaires' disease or the less severe flu-like illness Pontiac fever. It is presumed that all species of the genus Legionella are capable of causing disease in humans. As a followup to a prior clinical study of legionellosis in rural Thailand, indigenous soil samples were collected proximal to cases' homes and workplaces and tested for the presence of legionellae by culture. We obtained 115 isolates from 22/39 soil samples and used sequence-based methods to identify 12 known species of Legionella represented by 87 isolates.

13.
Water Res ; 45(15): 4428-36, 2011 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-21726887

RESUMO

A pilot study for the Environmental Legionella Isolation Techniques Evaluation (ELITE) Program, a proficiency testing scheme for US laboratories that culture Legionella from environmental samples, was conducted September 1, 2008 through March 31, 2009. Participants (n=20) processed panels consisting of six sample types: pure and mixed positive, pure and mixed negative, pure and mixed variable. The majority (93%) of all samples (n=286) were correctly characterized, with 88.5% of samples positive for Legionella and 100% of negative samples identified correctly. Variable samples were incorrectly identified as negative in 36.9% of reports. For all samples reported positive (n=128), participants underestimated the cfu/ml by a mean of 1.25 logs with standard deviation of 0.78 logs, standard error of 0.07 logs, and a range of 3.57 logs compared to the CDC re-test value. Centering results around the interlaboratory mean yielded a standard deviation of 0.65 logs, standard error of 0.06 logs, and a range of 3.22 logs. Sampling protocol, treatment regimen, culture procedure, and laboratory experience did not significantly affect the accuracy or precision of reported concentrations. Qualitative and quantitative results from the ELITE pilot study were similar to reports from a corresponding proficiency testing scheme available in the European Union, indicating these results are probably valid for most environmental laboratories worldwide. The large enumeration error observed suggests that the need for remediation of a water system should not be determined solely by the concentration of Legionella observed in a sample since that value is likely to underestimate the true level of contamination.


Assuntos
Técnicas Bacteriológicas/normas , Legionella/isolamento & purificação , Contagem de Colônia Microbiana , Recuperação e Remediação Ambiental/métodos , Legionella/crescimento & desenvolvimento , Projetos Piloto , Avaliação de Programas e Projetos de Saúde , Estados Unidos
14.
J Bacteriol ; 192(4): 1030-44, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20008069

RESUMO

Legionella longbeachae causes most cases of legionellosis in Australia and may be underreported worldwide due to the lack of L. longbeachae-specific diagnostic tests. L. longbeachae displays distinctive differences in intracellular trafficking, caspase 1 activation, and infection in mouse models compared to Legionella pneumophila, yet these two species have indistinguishable clinical presentations in humans. Unlike other legionellae, which inhabit freshwater systems, L. longbeachae is found predominantly in moist soil. In this study, we sequenced and annotated the genome of an L. longbeachae clinical isolate from Oregon, isolate D-4968, and compared it to the previously published genomes of L. pneumophila. The results revealed that the D-4968 genome is larger than the L. pneumophila genome and has a gene order that is different from that of the L. pneumophila genome. Genes encoding structural components of type II, type IV Lvh, and type IV Icm/Dot secretion systems are conserved. In contrast, only 42/140 homologs of genes encoding L. pneumophila Icm/Dot substrates have been found in the D-4968 genome. L. longbeachae encodes numerous proteins with eukaryotic motifs and eukaryote-like proteins unique to this species, including 16 ankyrin repeat-containing proteins and a novel U-box protein. We predict that these proteins are secreted by the L. longbeachae Icm/Dot secretion system. In contrast to the L. pneumophila genome, the L. longbeachae D-4968 genome does not contain flagellar biosynthesis genes, yet it contains a chemotaxis operon. The lack of a flagellum explains the failure of L. longbeachae to activate caspase 1 and trigger pyroptosis in murine macrophages. These unique features of L. longbeachae may reflect adaptation of this species to life in soil.


Assuntos
Proteínas de Bactérias/genética , Genoma Bacteriano , Legionella longbeachae/genética , Legionella longbeachae/patogenicidade , Legionelose/microbiologia , Análise de Sequência de DNA , Fatores de Virulência/genética , Idoso , Sequência Conservada , Feminino , Humanos , Legionella longbeachae/isolamento & purificação , Legionella pneumophila/genética , Dados de Sequência Molecular , Oregon , Sintenia
15.
Microbiology (Reading) ; 152(Pt 12): 3569-3573, 2006 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17159209

RESUMO

Legionellae colonize biofilms in building water systems, yet little is known about their interaction with the organisms in these microbial communities. The role of Legionella pneumophila type IV pili and the type II secretion pre-pilin peptidase was evaluated in a model biofilm system. L. pneumophila strains 130b (wild-type), BS100 (a type IV pili mutant) and NU243 (a pre-pilin peptidase mutant) were assessed for attachment and retention in an established biofilm. Strains 130b and NU243 colonized the biofilm at a similar level while BS100 attached at a tenfold lower level. Over time, NU243 dropped below the level of detection while BS100 remained in the biofilm throughout the course of the experiment. The wild-type strain decreased but remained at a considerably higher level than either of the mutants. Inclusion of amoebae with BS100 allowed for attachment and retention at a level similar to 130b. NU243, which displays reduced intracellular replication, was able to establish itself and persist in the presence of amoebae. Thus, type IV pili and the pre-pilin peptidase facilitate L. pneumophila colonization of biofilms but are not required in the presence of a host for intracellular replication.


Assuntos
Biofilmes/crescimento & desenvolvimento , Fímbrias Bacterianas/fisiologia , Legionella pneumophila/crescimento & desenvolvimento , Amébidos/microbiologia , Animais , Aderência Bacteriana/genética , Contagem de Colônia Microbiana , Proteínas de Fímbrias/metabolismo , Fímbrias Bacterianas/genética , Legionella pneumophila/genética , Legionella pneumophila/fisiologia , Mutação , Peptídeo Hidrolases/genética , Peptídeo Hidrolases/fisiologia , Transporte Proteico/genética
16.
Clin Infect Dis ; 40(8): 1205-7, 2005 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-15791524

RESUMO

We investigated 3 cases of legionnaires disease (LD) that developed in travelers who stayed at a hotel in the United States Virgin Islands where cases of LD occurred in 1981-1982 and in 1998. The temperature of the potable water at the hotel was in a range that could optimally support the growth of Legionella species, and the potable water was colonized with Legionella pneumophila in 1981-1982 and in 2002-2003.


Assuntos
Doença dos Legionários/epidemiologia , Humanos , Doença dos Legionários/microbiologia , Viagem , Ilhas Virgens Americanas/epidemiologia , Microbiologia da Água
17.
Microbiology (Reading) ; 143 ( Pt 7): 2117-2125, 1997 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-9245801

RESUMO

The mtr (multiple transferable resistance) system of Neisseria gonorrhoeae mediates resistance of gonococci to structurally diverse hydrophobic agents (HAs) through an energy-dependent efflux process. Recently, complete or partial ORFs that encode membrane proteins (MtrC, MtrD, MtrE) forming an efflux pump responsible for removal of HAs from gonococci were identified and appeared to constitute a single transcriptional unit. In this study, the complete nucleotide sequence of the mtrD gene was determined, permitting the characterization of the MtrD protein. The full-length MtrD protein has a predicted molecular mass of nearly 114 kDa, putatively containing a 56 amino acid signal peptide. MtrD displays significant amino acid sequence similarity to a family of cytoplasmic membrane proteins, termed resistance/nodulation/division (RND) proteins, which function as energy-dependent transporters of antibacterial agents and secrete bacterial products to the extracellular fluid. The predicted topology of the MtrD transporter protein revealed 12 potential membrane-spanning domains, which were clustered within the central and C-terminal regions of the primary sequence. Loss of MtrD due to insertional inactivation of the mtrD gene rendered gonococci hypersusceptible to several structurally diverse HAs, including two fatty acids (capric acid and palmitic acid) and a bile salt (cholic acid), but not hydrophilic antibiotics such as ciprofloxacin and streptomycin. Since gonococci often infect mucosal sites rich in toxic fatty acids and bile salts, the expression of the mtr efflux system may promote growth of gonococci under hostile conditions encountered in vivo.


Assuntos
Sistemas de Transporte de Aminoácidos Neutros , Proteínas da Membrana Bacteriana Externa/genética , Proteínas de Bactérias , Resistência Microbiana a Medicamentos/genética , Genes Bacterianos , Proteínas de Membrana/genética , Proteínas de Membrana Transportadoras/genética , Neisseria gonorrhoeae/genética , Sequência de Aminoácidos , Proteínas da Membrana Bacteriana Externa/metabolismo , Proteínas de Membrana/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Dados de Sequência Molecular , Neisseria gonorrhoeae/metabolismo , Análise de Sequência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...