Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Probiotics Antimicrob Proteins ; 16(2): 649-672, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37076595

RESUMO

The management of fungal diseases imposes an urgent need for the development of effective antifungal drugs. Among new drug candidates are the antimicrobial peptides, and especially their derivatives. Here, we investigated the molecular mechanism of action of three bioinspired peptides against the opportunistic yeasts Candida tropicalis and Candida albicans. We assessed morphological changes, mitochondrial functionality, chromatin condensation, ROS production, activation of metacaspases, and the occurrence of cell death. Our results indicated that the peptides induced sharply contrasting death kinetics, of 6 h for RR and 3 h for D-RR to C. tropicalis and 1 h for WR to C. albicans. Both peptide-treated yeasts exhibited increased ROS levels, mitochondrial hyperpolarization, cell size reduction, and chromatin condensation. RR and WR induced necrosis in C. tropicalis and C. albicans, but not D-RR in C. tropicalis. The antioxidant ascorbic acid reverted the toxic effect of RR and D-RR, but not WR, suggesting that instead of ROS there is a second signal triggered that leads to yeast death. Our data suggest that RR induced a regulated accidental cell death in C. tropicalis, D-RR induced a programmed cell death metacaspase-independent in C. tropicalis, while WR induced an accidental cell death in C. albicans. Our results were obtained with the LD100 and within the time that the peptides induce the yeast death. Within this temporal frame, our results allow us to gain clarity on the events triggered by the peptide-cell interaction and their temporal order, providing a better understanding of the death process induced by them.


Assuntos
Antifúngicos , Candida albicans , Espécies Reativas de Oxigênio/metabolismo , Candida albicans/metabolismo , Antifúngicos/química , Morte Celular , Peptídeos/farmacologia , Peptídeos/metabolismo , Candida tropicalis/metabolismo , Cromatina/metabolismo , Testes de Sensibilidade Microbiana
2.
Amino Acids ; 53(2): 219-237, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33483849

RESUMO

Microbial resistance to available drugs is a growing health threat imposing the need for the development of new drugs. The scaffold of plant defensins, including their γ-cores, are particularly good candidates for drug design. This work aimed to improve the antifungal activity of a previous design peptide, named A36,42,44γ32-46VuDef (for short DD) against yeasts by altering its biochemical parameters. We explore the correlation of the biological activity and structure of plant defensins and compared their primary structures by superimposition with VuDef1 and DD which indicated us the favorable position and the amino acid to be changed. Three new peptides with modifications in charge, hydrophobicity (RR and WR) and chirality (D-RR) were designed and tested against pathogenic yeasts. Inhibition was determined by absorbance. Viability of mammalian cells was determined by MTT. The three designed peptides had better inhibitory activity against the yeasts with better potency and spectrum of yeast species inhibition, with low toxicity to mammalian cells. WR, the most hydrophobic and cationic, exhibited better antifungal activity and lower toxicity. Our study provides experimental evidence that targeted changes in the primary structure of peptides based on plant defensins γ-core primary structures prove to be a good tool for the synthesis of new compounds that may be useful as alternative antifungal drugs. The method described did not have the drawback of synthesis of several peptides, because alterations are guided. When compared to other methods, the design process described is efficient and viable to those with scarce resources.


Assuntos
Antifúngicos/química , Antifúngicos/farmacologia , Peptídeos/química , Peptídeos/farmacologia , Sequência de Aminoácidos , Linhagem Celular , Defensinas/química , Defensinas/farmacologia , Desenho de Fármacos , Humanos , Interações Hidrofóbicas e Hidrofílicas , Testes de Sensibilidade Microbiana , Leveduras/efeitos dos fármacos , Leveduras/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA