Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Oral Dis ; 28(3): 786-795, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33586328

RESUMO

BACKGROUND: Previous studies have shown that latex proteins from Plumeria pudica (LPPp) have anti-inflammatory and antioxidant activity. Therefore, the aim of this study was to evaluate the effects in rats of LPPp on ligature-induced periodontitis, an inflammatory disease. METHODS: The animals were divided into groups: saline (animals without induction of periodontitis), periodontitis (induced periodontitis and untreated) and LPPp (induced periodontitis and treated with 40 mg/kg). The following parameters were evaluated after 20 consecutive days of treatment: gingival bleeding index (GBI), probing pocket depth (PPD), alveolar bone height (ABH) and gingival myeloperoxidase (MPO) activity. In the hepatic tissue, malondialdehyde (MDA), glutathione (GSH) and histopathological alterations were evaluated. Blood levels of alanine aminotransferase (ALT) and aspartate aminotransferase (AST) were measured. RESULTS: Significant reduction in GBI, PPD and gingival MPO activity and ABH was seen in animals treated with LPPp compared with periodontitis. Values of GSH, MDA, ALT and histopathological evaluation were preserved in animals treated with LPPp. CONCLUSIONS: Treatment with LPPp improved clinical aspects of periodontitis, reduced the blood and hepatic alterations and prevented alveolar bone loss. Data suggest that LPPp have potential for treatment of periodontitis.


Assuntos
Perda do Osso Alveolar , Apocynaceae , Periodontite , Perda do Osso Alveolar/tratamento farmacológico , Perda do Osso Alveolar/etiologia , Perda do Osso Alveolar/prevenção & controle , Animais , Apocynaceae/metabolismo , Látex/metabolismo , Látex/farmacologia , Látex/uso terapêutico , Periodontite/tratamento farmacológico , Periodontite/patologia , Ratos , Ratos Wistar
2.
Front Neurosci ; 13: 317, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31019448

RESUMO

Accumulating evidence indicates that thyroid function and the thyroid hormones L-thyroxine (T4) and L-triiodothyronine (T3) are important factors contributing to the improvement of various pathologies of the central nervous system, including stroke, and various types of cancer, including glioblastoma multiforme (GBM). Low levels of T3 are correlated with the poorest outcome of post-stroke brain function, as well as an increased migration and proliferation of GBM tumor cells. Thyroid hormones are known to stimulate maturation and brain development. Aquaporin 4 (AQP4) is a key factor mediating the cell swelling and edema that occurs during ischemic stroke, and plays a potential role in the migration and proliferation of GBM tumor cells. In this study, as a possible therapeutic target for GBM, we investigated the potential role of T3 in the expression of AQP4 during different stages of mouse brain development. Pregnant mice at gestational day 18, or young animals at postnatal days 27 and 57, received injection of T3 (1 µg/g) or NaOH (0.02 N vehicle). The brains of mice sacrificed on postnatal days 0, 30, and 60 were perfused with 4% paraformaldehyde and sections were prepared for immunohistochemistry of AQP4. AQP4 immunofluorescence was measured in the mouse brains and human GBM cell lines. We found that distribution of AQP4 was localized in astrocytes of the periventricular, subpial, and cerebral parenchyma. Newborn mice treated with T3 showed a significant decrease in AQP4 immunoreactivity followed by an increased expression at P30 and a subsequent stabilization of aquaporin levels in adulthood. All GBM cell lines examined exhibited significantly lower AQP4 expression than cultured astrocytes. T3 treatment significantly downregulated AQP4 in GBM-95 cells but did not influence the rate of GBM cell migration measured 24 h after treatment initiation. Collectively, our results showed that AQP4 expression is developmentally regulated by T3 in astrocytes of the cerebral cortex of newborn and young mice, and is discretely downregulated in GBM cells. These findings indicate that higher concentrations of T3 thyroid hormone would be more suitable for reducing AQP4 in GBM tumorigenic cells, thereby resulting in better outcomes regarding the reduction of brain tumor cell migration and proliferation.

3.
J Agric Food Chem ; 66(21): 5325-5334, 2018 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-29733587

RESUMO

The nanoencapsulation of botanical compounds (such as geraniol) is an important strategy that can be used to increase the stability and efficiency of these substances in integrated pest management. In this study, chitosan/gum arabic nanoparticles containing geraniol were prepared and characterized. In addition, evaluation was made of the biological activity of geraniol encapsulated in chitosan/gum arabic nanoparticles toward whitefly ( Bemisia tabaci). The optimized formulation showed a high encapsulation efficiency (>90%) and remained stable for about 120 days. The formulation protected the geraniol against degradation by UV radiation, and the in vitro release was according to a diffusion mechanism that was influenced by temperature. An attraction effect was observed for Bemisia tabaci, indicating the potential of this type of system for use in pest management, especially in trap devices.


Assuntos
Agricultura/métodos , Quitosana , Goma Arábica , Controle de Insetos/métodos , Nanopartículas/química , Terpenos/administração & dosagem , Monoterpenos Acíclicos , Animais , Difusão , Estabilidade de Medicamentos , Hemípteros , Controle de Insetos/instrumentação , Inseticidas/administração & dosagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA