Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Foods ; 13(11)2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38890930

RESUMO

Salmonella Enteritidis, Escherichia coli, and Campylobacter jejuni are among the most common foodborne pathogens worldwide, and poultry products are strongly associated with foodborne pathogen outbreaks. These pathogens are capable of producing biofilms on several surfaces used in the food processing industry, including polyethylene and stainless steel. However, studies on multi-species biofilms are rare. Therefore, this study aimed to develop predictive mathematical models to simulate the adhesion and removal of multispecies biofilms. All combinations of microorganisms resulted in biofilm formation with differences in bacterial counts. E. coli showed the greatest ability to adhere to both surfaces, followed by S. Enteritidis and C. jejuni. The incubation time and temperature did not influence adhesion. Biofilm removal was effective with citric acid and benzalkonium chloride but not with rhamnolipid. Among the generated models, 46 presented a significant coefficient of determination (R2), with the highest R2 being 0.88. These results provide support for the poultry industry in creating biofilm control and eradication programs to avoid the risk of contamination of poultry meat.

2.
Food Microbiol ; 114: 104280, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37290865

RESUMO

Poultry products are recognized as the main source of Salmonella and Campylobacter jejuni infections in humans, while avian pathogenic Escherichia coli may have zoonotic potential and can be transmitted from chicken meat to humans. Biofilm formation contributes to their spread through the food chain. This study aimed to compare the adhesion of Salmonella Enteritidis, E. coli, and C. jejuni strains isolated from poultry, food implicated in outbreaks, and poultry slaughterhouses on three surfaces widely used in poultry production (polystyrene, stainless steel, and polyethylene). S. Enteritidis and E. coli adhesion on the three surfaces tested were not significantly different (p > 0.05). Interestingly, the number of C. jejuni cells on stainless steel (4.51-4.67 log10 CFU/cm.-2) was significantly higher (p = 0.0004) than that on polystyrene (3.80-4.25 log10 CFU/cm.-2), but similar (p > 0.05) to that on polyethylene (4.03-4.36 log10 CFU/cm.-2). However, C. jejuni adhesion was significantly lower (p < 0.05) than S. Enteritidis and E. coli adhesion, regardless of the surface evaluated. In addition, scanning electron microscopy analyses have shown an increased irregularity of the stainless steel surface when compared to polyethylene and polystyrene. These irregularities form small spaces ideal for microbial adhesion.


Assuntos
Campylobacter jejuni , Salmonella enteritidis , Humanos , Escherichia coli , Aderência Bacteriana , Biofilmes , Poliestirenos , Aço Inoxidável , Microbiologia de Alimentos , Polietileno
3.
Braz J Microbiol ; 54(3): 2035-2045, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37184738

RESUMO

Owing to its antimicrobial activity, electrochemically activated water (ECAW) is a potential alternative to chemical disinfectants for eliminating foodborne pathogens, including Salmonella Heidelberg, from food processing facilities. However, their antibiofilm activity remains unclear. This study aimed to evaluate the antibiofilm activity of ECAW against S. Heidelberg biofilms formed on stainless steel and polyethylene and to determine its corrosive capacity. ECAW (200 ppm) and a broad-spectrum disinfectant (0.2%) were tested for their antibiofilm activity against S. Heidelberg at 25 °C and 37 °C after 10 and 20 min of contact with stainless steel and polyethylene. Potentiostatic polarization tests were performed to compare the corrosive capacity of both compounds. Both compounds were effective in removing S. Heidelberg biofilms. Bacterial counts were significantly lower with ECAW than with disinfectant in polyethylene, regardless the time of contact. The time of contact and the surface significantly influenced the bacterial counts of S. Heidelberg. Temperature was not an important factor affecting the antibiofilm activities of the compounds. ECAW was less corrosive than the disinfectant. ECAW demonstrated a similar or even superior effect in the control of S. Heidelberg biofilms, when compared to disinfectants, reducing bacterial counts by up to 5 log10 CFU cm-2. The corrosion of stainless steel with ECAW was similar to that of commercial disinfectants. This technology is a possible alternative for controlling S. Heidelberg in the food production chain.


Assuntos
Cáusticos , Desinfetantes , Aço Inoxidável , Cáusticos/farmacologia , Biofilmes , Salmonella , Desinfetantes/farmacologia , Polietilenos/farmacologia , Microbiologia de Alimentos
4.
Microb Pathog ; 138: 103799, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31614192

RESUMO

Salmonella spp. are among the leading pathogens responsible for foodborne illnesses worldwide. Bacterial communities use a quorum sensing (QS) system to control biofilm formation. QS is a cell-to-cell signaling mechanism involving compounds called auto-inducers (AI). Norepinephrine utilizes the same bacterial signaling of AI-3 and serves as a signal of QS. Acid stress is a challenge encountered by microorganisms in food processing environments and in the gastrointestinal tracts of hosts. Thus, adaptation to acidic environments may increase the pathogenicity of the strain. The aim of this study was to evaluate the influence of two concentrations of norepinephrine (100 µM and 250 µM) and acidification (pH 3.0) of the medium on the growth and adhesion of Salmonella Heidelberg strains isolated from poultry sources at 12 °C and 25 °C. Furthermore, three genes associated with the biofilm formation process were detected (adrA, csgD, and sidA). Norepinephrine stimulation did not influence the growth or adhesion of Salmonella Heidelberg strains, regardless of the catecholamine concentration and temperature. On the other hand, the use of acidified medium (pH 3.0) resulted in a significant reduction of growth and a significant increase of S. Heidelberg adhesion at both temperatures, indicating that the acidified medium favors the biofilm formation process. The adrA and sidA genes showed higher detection frequencies than csgD. Experiments analyzing the biofilm production process by S. Heidelberg strains are not common, and further studies are necessary to understand this complex process.


Assuntos
Biofilmes , Concentração de Íons de Hidrogênio , Norepinefrina/farmacologia , Salmonella enterica/crescimento & desenvolvimento , Animais , Proteínas de Bactérias/genética , Biofilmes/efeitos dos fármacos , Biofilmes/crescimento & desenvolvimento , Doenças Transmitidas por Alimentos/microbiologia , Genes Bacterianos , Norepinefrina/administração & dosagem , Aves Domésticas/microbiologia , Percepção de Quorum/efeitos dos fármacos , Percepção de Quorum/genética , Percepção de Quorum/fisiologia , Salmonella enterica/efeitos dos fármacos , Salmonella enterica/genética , Salmonella enterica/metabolismo , Virulência , Fatores de Virulência/genética
5.
Microb Pathog ; 130: 54-58, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30831229

RESUMO

Salmonella spp. are the main pathogens responsible for foodborne disease worldwide. Bacterial communities use the quorum sensing system to control biofilm formation. These systems function through the secretion of substances, called auto-inducers (AI), into the environment. AI-3 is structurally similar to epinephrine (EPI) and norepinephrine (NOR) -catecholamines secreted by eukaryotic cells to communicate with each other. In this context, this work aimed to evaluate the effect of EPI and NOR on biofilm formation by S. Enteritidis at 12 °C and 25 °C. Also, we detected the presence of the csgD, adrA, and fimA genes in these strains. Biofilm formation was investigated at two temperatures (12 °C and 25 °C) using a microtiter plate assay, under four different treatments (50 mM EPI, 100 mM EPI, 50 mM NOR; 100 mM NOR) and a control group. PCR was used to detect the virulence genes associated with biofilm production. A greater number of biofilm producer isolates were observed at 25 °C than at 12 °C, regardless of the treatment. The number of biofilms forming strains at 12 °C was significantly higher in the treatment with norepinephrine at 100 µM. The proportion of non-producer and biofilm producer strains at 25 °C did not differ significantly among the treatments. All strains presented the three genes (csgD, adrA, and fimA). The approach carried out in this work is a precursor in veterinary medicine, focusing on both public and poultry health, and evaluates the influence of catecholamines on the formation of biofilms with S. Enteritidis, an important pathogen with zoonotic potential. Norepinephrine seems to be more efficient at stimulating biofilm formation by S. Enteritidis strains at 12 °C. csgD, fimA, and adrA were detected in all strains.


Assuntos
Biofilmes/efeitos dos fármacos , Biofilmes/crescimento & desenvolvimento , Catecolaminas/metabolismo , Salmonella enteritidis/efeitos dos fármacos , Salmonella enteritidis/crescimento & desenvolvimento , Epinefrina/metabolismo , Perfilação da Expressão Gênica , Norepinefrina/metabolismo , Reação em Cadeia da Polimerase , Percepção de Quorum/efeitos dos fármacos , Temperatura , Fatores de Virulência/biossíntese , Fatores de Virulência/genética
6.
Front Vet Sci ; 3: 72, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27630995

RESUMO

The objectives of the present study were to evaluate the risks involved in the use of Enrofloxacin for Salmonella Enteritidis (SE) or Salmonella Heidelberg (SH) in commercial poultry and determine the effects of a probiotic as an antibiotic alternative. Two experiments were conducted to evaluate the risks involved in the use of Enrofloxacin for SE or SH in commercial poultry. Experiment 1 consisted of two trials. In each trial, chickens were assigned to one of three groups; control + SE challenged; Enrofloxacin 25 mg/kg + SE; and Enrofloxacin 50 mg/kg + SE. Chickens received Enrofloxacin in the drinking water from days 1 to 5 of age. On day 6, all groups received fresh water without any treatment. All chickens were orally gavaged with 10(7) cfu/chick of SE at 7 days of age and euthanized on 8 days of age. In Experiment 2, turkey poults were assigned to one of the three groups; control + SH; probiotic + SH; and Enrofloxacin 50 mg/kg + SH. Poults received probiotic or Enrofloxacin in the drinking water from days 1 to 5 of age. On day 6, poults received fresh water without any treatment. Poults were orally gavaged with 10(7) cfu/poult of SH at 7 days of age. Poults were weighed and humanely killed 24 h post-SH challenge to evaluate serum concentration of fluorescein isothiocyanate-dextran to evaluate intestinal permeability, metagenomics, and SH infection. In both trials of Experiment 1, chickens treated with Enrofloxacin were more susceptible to SE organ invasion and intestinal colonization when compared with control non-treated chickens (P < 0.05). In Experiment 2, poults treated with 50 mg/kg of Enrofloxacin showed an increase in body weight, however, this group also showed an increase in SH susceptibility, intestinal permeability, and lower proportion of Firmicutes and Bacteroidetes, but with control group had the highest proportion of Proteobacteria. By contrast, poults that received the probiotic had the highest proportion of Firmicutes and Bacteroidetes, but lowest Proteobacteria. The results of the present study suggest that prophylactic utilization of Enrofloxacin at five times the recommended dose in poultry increases the susceptibility to salmonellae infections, and confirms that probiotics may be an effective tool in salmonellae infections.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA