Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Exp Physiol ; 104(7): 1074-1089, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31012180

RESUMO

NEW FINDINGS: What is the central question of this study? Do Fog2Rb-/Rb- mice present a defect of small intestine homeostasis? What is the main finding and its importance? The importance of interactions between FOG-2 and pRb in adipose tissue physiology has previously been demonstrated. Here it is shown that this interaction is also intrinsic to small intestine homeostasis and exerts extrinsic control over mouse metabolism. Thus, this association is involved in maintaining small intestine morphology, and regulating crypt proliferation and lineage differentiation. It therefore affects mouse growth and adaptation to a high-fat diet. ABSTRACT: GATA transcription factors and their FOG cofactors play a key role in tissue-specific development and differentiation, from worms to humans. We have shown that GATA-1 and FOG-2 contain an LXCXE pRb-binding motif. Interactions between retinoblastoma protein (pRb) and GATA-1 are crucial for erythroid proliferation and differentiation, whereas the LXCXE pRb-binding site of FOG-2 is involved in adipogenesis. Fog2-knock-in mice have defective pRb binding and are resistant to obesity, due to efficient white-into-brown fat conversion. Our aim was to investigate the pathophysiological impact of FOG-2-pRb interaction on the small intestine and mouse growth. Histological analysis of the small intestine revealed architectural changes in Fog2Rb-/Rb- mice, including villus shortening, with crypt expansion and a change in muscularis propria thickness. These differences were more marked in the proximo-distal part of the small intestine and were associated with an increase in crypt cell proliferation and disruption of the goblet and Paneth cell lineage. The small intestine of the mutants was unable to adapt to a high-fat diet, and had significantly lower plasma lipid levels on such a diet. Fog2Rb-/Rb- mice displayed higher levels of glucose-dependent insulinotropic peptide release, and lower levels of insulin-like growth factor I release on a regular diet. Their intestinal lipid absorption was impaired, resulting in restricted weight gain. In addition to the intrinsic effects of the mutation on adipose tissue, we show here an extrinsic relationship between the intestine and the effect of FOG-2 mutation on mouse metabolism. In conclusion, the interaction of FOG-2 with pRb coordinates the crypt-villus axis and controls small intestine homeostasis.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Dieta Hiperlipídica/efeitos adversos , Homeostase/fisiologia , Intestino Delgado/metabolismo , Domínios Proteicos Ricos em Prolina/fisiologia , Fatores de Transcrição/metabolismo , Animais , Proteínas de Ligação a DNA/genética , Feminino , Intestino Delgado/citologia , Masculino , Camundongos , Camundongos da Linhagem 129 , Camundongos Transgênicos , Ligação Proteica/fisiologia , Distribuição Aleatória , Fatores de Transcrição/genética
2.
Brain ; 141(5): 1434-1454, 2018 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29534157

RESUMO

The neurobiological functions of a number of kinases expressed in the brain are unknown. Here, we report new findings on DCLK3 (doublecortin like kinase 3), which is preferentially expressed in neurons in the striatum and dentate gyrus. Its function has never been investigated. DCLK3 expression is markedly reduced in Huntington's disease. Recent data obtained in studies related to cancer suggest DCLK3 could have an anti-apoptotic effect. Thus, we hypothesized that early loss of DCLK3 in Huntington's disease may render striatal neurons more susceptible to mutant huntingtin (mHtt). We discovered that DCLK3 silencing in the striatum of mice exacerbated the toxicity of an N-terminal fragment of mHtt. Conversely, overexpression of DCLK3 reduced neurodegeneration produced by mHtt. DCLK3 also produced beneficial effects on motor symptoms in a knock-in mouse model of Huntington's disease. Using different mutants of DCLK3, we found that the kinase activity of the protein plays a key role in neuroprotection. To investigate the potential mechanisms underlying DCLK3 effects, we studied the transcriptional changes produced by the kinase domain in human striatal neurons in culture. Results show that DCLK3 regulates in a kinase-dependent manner the expression of many genes involved in transcription regulation and nucleosome/chromatin remodelling. Consistent with this, histological evaluation showed DCLK3 is present in the nucleus of striatal neurons and, protein-protein interaction experiments suggested that the kinase domain interacts with zinc finger proteins, including the transcriptional activator adaptor TADA3, a core component of the Spt-ada-Gcn5 acetyltransferase (SAGA) complex which links histone acetylation to the transcription machinery. Our novel findings suggest that the presence of DCLK3 in striatal neurons may play a key role in transcription regulation and chromatin remodelling in these brain cells, and show that reduced expression of the kinase in Huntington's disease could render the striatum highly vulnerable to neurodegeneration.


Assuntos
Corpo Estriado/enzimologia , Proteína Huntingtina/genética , Doença de Huntington/terapia , Mutação/genética , Proteínas Serina-Treonina Quinases/metabolismo , Animais , Células Cultivadas , Modelos Animais de Doenças , Quinases Semelhantes a Duplacortina , Regulação para Baixo/genética , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Força da Mão/fisiologia , Doença de Huntington/genética , Macaca fascicularis , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Atividade Motora , Neurônios/metabolismo , Fosfopiruvato Hidratase/metabolismo , Proteínas Serina-Treonina Quinases/genética , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Transativadores/genética , Transativadores/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...