Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Neurosci ; 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38637154

RESUMO

Cocaine use disorder is a significant public health issue without an effective pharmacological treatment. Successful treatments are hindered in part by an incomplete understanding of the molecular mechanisms that underlie long-lasting maladaptive plasticity and addiction-like behaviors. Here, we leverage a large RNA-sequencing dataset to generate gene co-expression networks across 6 interconnected regions of the brain's reward circuitry from mice that underwent saline or cocaine self-administration. We identify phosphodiesterase 1b (Pde1b), a Ca2+/calmodulin-dependent enzyme that increases cAMP and cGMP hydrolysis, as a central hub gene within a nucleus accumbens (NAc) gene module that was bioinformatically associated with addiction-like behavior. Chronic cocaine exposure increases Pde1b expression in NAc D2 medium spiny neurons (MSNs) in male but not female mice. Viral-mediated Pde1b overexpression in NAc reduces cocaine self-administration in female rats, but increases seeking in both sexes. In female mice, overexpressing Pde1b in D1 MSNs attenuates the locomotor response to cocaine, with the opposite effect in D2 MSNs. Overexpressing Pde1b in D1/D2 MSNs had no effect on the locomotor response to cocaine in male mice. At the electrophysiological level, Pde1b overexpression reduces sEPSC frequency in D1 MSNs, while increasing excitability of D2 MSNs. Lastly, Pde1b overexpression significantly reduced the number of differentially expressed genes (DEGs) in NAc following chronic cocaine, with discordant effects on gene transcription between sexes. Together, we identify novel gene modules across the brain's reward circuitry associated with addiction-like behavior and explore the role of Pde1b in regulating the molecular, cellular, and behavioral responses to cocaine.Significance Statement Cocaine use disorder is a major public health challenge without an effective pharmacological treatment. Here, we leverage a combination of genome-wide RNA sequencing, gene co-expression network analysis, and bioinformatic analyses of cocaine self-administration behavior to identify a role for phosphodiesterase 1b (Pde1b) in regulating maladaptive, addiction-like behavior. Our studies reveal cell-type- and sex-specific roles for Pde1b in regulating the molecular, cellular, and behavioral responses to cocaine, yielding insight into the molecular mechanisms by which cocaine induces maladaptive plasticity in the brain's reward circuity to drive addiction-like behavior. These discoveries guide directions for future research investigating the molecular basis of cocaine action and provide a pathway for therapeutic development for cocaine use disorder.

2.
Sci Rep ; 13(1): 12223, 2023 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-37500710

RESUMO

Opioid Use Disorder (OUD) is associated with tremendous morbidity and mortality. Despite this burden, current pharmacotherapies for OUD are ineffective or intolerable for many patients. As such, interventions aimed at promoting resilience against OUD are of immense clinical interest. Treatment with a Bioactive Dietary Polyphenol Preparation (BDPP) promotes resilience and adaptive neuroplasticity in multiple models of neuropsychiatric disease. Here, we assessed effects of BDPP treatment on behavioral and molecular responses to repeated morphine treatment in male mice. BDPP pre-treatment alters responses for both locomotor sensitization and conditioned place preference. Most notably, polyphenol treatment consistently reduced formation of preference at low dose (5 mg/kg) morphine but enhanced it at high dose (15 mg/kg). In parallel, we performed transcriptomic profiling of the nucleus accumbens, which again showed a dose × polyphenol interaction. We also profiled microbiome composition and function, as polyphenols are metabolized by the microbiome and can act as prebiotics. The profile revealed polyphenol treatment markedly altered microbiome composition and function. Finally, we investigated involvement of the SIRT1 deacetylase, and the role of polyphenol metabolites in behavioral responses. These results demonstrate polyphenols have robust dose-dependent effects on behavioral and physiological responses to morphine and lay the foundation for future translational work.


Assuntos
Morfina , Núcleo Accumbens , Camundongos , Masculino , Animais , Núcleo Accumbens/metabolismo , Polifenóis/metabolismo
3.
Psychopharmacology (Berl) ; 238(12): 3499-3509, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34487190

RESUMO

Cocaine use disorder is associated with alterations in immune function including altered expression of multiple peripheral cytokines in humans-several of which correlate with drug use. Individuals suffering from cocaine use disorder show altered immune system responses to drug-associated cues, highlighting the interaction between the brain and immune system as a critical factor in the development and expression of cocaine use disorder. We have previously demonstrated in animal models that cocaine use upregulates the expression of granulocyte colony-stimulating factor (G-CSF)-a pleiotropic cytokine-in the serum and the nucleus accumbens (NAc). G-CSF signaling has been causally linked to behavioral responses to cocaine across multiple behavioral domains. The goal of this study was to define whether increases in G-CSF alter the pharmacodynamic effects of cocaine on the dopamine system and whether this occurs via direct mechanisms within local NAc microcircuits. We find that systemic G-CSF injection increases cocaine effects on dopamine terminals. The enhanced dopamine levels in the presence of cocaine occur through a release-based mechanism, rather than through effects on the dopamine transporter-as uptake rates were unchanged following G-CSF treatment. Critically, this effect could be recapitulated by acute bath application of G-CSF to dopamine terminals, an effect that was occluded by prior G-CSF treatment, suggesting a similar mechanistic basis for direct and systemic exposures. This work highlights the critical interaction between the immune system and psychostimulant effects that can alter drug responses and may play a role in vulnerability to cocaine use disorder.


Assuntos
Cocaína , Dopamina , Fator Estimulador de Colônias de Granulócitos/farmacologia , Núcleo Accumbens/efeitos dos fármacos , Animais , Cocaína/farmacologia , Dopamina/metabolismo , Inibidores da Captação de Dopamina , Masculino , Camundongos Endogâmicos C57BL
4.
Neuropharmacology ; 192: 108598, 2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-33965398

RESUMO

Epidemiology and clinical research indicate that only a subset of people who are exposed to drugs of abuse will go on to develop a substance use disorder. Numerous factors impact individual susceptibility to developing a substance use disorder, including intrinsic biological factors, environmental factors, and interpersonal/social factors. Given the extensive morbidity and mortality that is wrought as a consequence of substance use disorders, a substantial body of research has focused on understanding the risk factors that mediate the shift from initial drug use to pathological drug use. Understanding these risk factors provides a clear path for the development of risk mitigation strategies to help reduce the burden of substance use disorders in the population. Here we will review the rapidly growing body of literature that examines the importance of interactions between the peripheral immune system, the gut microbiome, and the central nervous system (CNS) in mediating the transition to pathological drug use. While these systems had long been viewed as distinct, there is growing evidence that there is bidirectional communication between both the immune system and the gut microbiome that drive changes in neural and behavioral plasticity relevant to substance use disorders. Further, both of these systems are highly sensitive to environmental perturbations and are implicated in numerous neuropsychiatric conditions. While the field of study examining these interactions in substance use disorders is in its relative infancy, clarifying the relationship between gut-immune-brain signaling and substance use disorders has potential to improve our understanding of individual propensity to developing addiction and yield important insight into potential treatment options.


Assuntos
Eixo Encéfalo-Intestino/fisiologia , Encéfalo/imunologia , Microbioma Gastrointestinal/fisiologia , Neuroimunomodulação/fisiologia , Transtornos Relacionados ao Uso de Substâncias/imunologia , Comportamento Aditivo/imunologia , Comportamento Aditivo/metabolismo , Comportamento Aditivo/psicologia , Encéfalo/metabolismo , Disbiose/imunologia , Disbiose/psicologia , Humanos , Transtornos Relacionados ao Uso de Substâncias/metabolismo , Transtornos Relacionados ao Uso de Substâncias/psicologia
5.
Int Rev Neurobiol ; 157: 311-370, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33648673

RESUMO

Substance use disorders (SUDs) are debilitating neuropsychiatric conditions that exact enormous costs in terms of loss of life and individual suffering. While much progress has been made defining the neurocircuitry and intracellular signaling cascades that contribute to SUDs, these studies have yielded limited effective treatment options. This has prompted greater exploration of non-traditional targets in addiction. Emerging data suggest inputs from peripheral systems, such as the immune system and the gut microbiome, impact multiple neuropsychiatric diseases, including SUDs. Until recently the gut microbiome, peripheral immune system, and the CNS have been studied independently; however, current work shows the gut microbiome and immune system critically interact to modulate brain function. Additionally, the gut microbiome and immune system intimately regulate one another via extensive bidirectional communication. Accumulating evidence suggests an important role for gut-immune-brain communication in the pathogenesis of substance use disorders. Thus, a better understanding of gut-immune-brain signaling could yield important insight to addiction pathology and potential treatment options.


Assuntos
Transdução de Sinais , Transtornos Relacionados ao Uso de Substâncias , Encéfalo/fisiopatologia , Microbioma Gastrointestinal/fisiologia , Humanos , Sistema Imunitário/fisiopatologia , Transdução de Sinais/fisiologia , Transtornos Relacionados ao Uso de Substâncias/fisiopatologia
6.
Behav Brain Res ; 359: 589-596, 2019 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-30296530

RESUMO

Childhood and adolescent adversity are associated with a wide range of psychiatric disorders, including an increased risk for substance abuse. Despite this, the mechanisms underlying the ability of chronic stress during adolescence to alter reward signaling remains largely unexplored. Understanding how adolescent stress increases addiction-like phenotypes could inform the development of targeted interventions both before and after drug use. The current study examined how prolonged isolation stress, beginning during adolescence, affected behavioral and neuronal underpinnings to the response to cocaine in male and female mice. Adolescent-onset social isolation did not alter the ability of mice to learn an operant response for food, nor influence food self-administration or motivation for food on a progressive ratio schedule. However, male and female social isolation mice exhibited an increase in motivation for cocaine and cocaine seeking during a cue-induced reinstatement session. Additionally, we demonstrated that adolescent-onset social isolation increased cocaine-induced neuronal activation, as assessed by c-Fos expression, within the nucleus accumbens core and shell, ventral pallidum, dorsal bed nucleus of the stria terminalis, lateral septum and basolateral amygdala. Taken together, the present studies demonstrate that social isolation stress during adolescence augments the behavioral responses to cocaine during adulthood and alters the responsiveness of reward-related brain circuitry.


Assuntos
Encéfalo/crescimento & desenvolvimento , Transtornos Relacionados ao Uso de Cocaína/psicologia , Comportamento de Procura de Droga , Isolamento Social , Animais , Comportamento Aditivo/metabolismo , Comportamento Aditivo/psicologia , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Cocaína/administração & dosagem , Transtornos Relacionados ao Uso de Cocaína/metabolismo , Condicionamento Operante/fisiologia , Inibidores da Captação de Dopamina/administração & dosagem , Comportamento de Procura de Droga/fisiologia , Ingestão de Alimentos/fisiologia , Ingestão de Alimentos/psicologia , Feminino , Masculino , Camundongos Endogâmicos C57BL , Motivação/fisiologia , Proteínas Proto-Oncogênicas c-fos/metabolismo , Distribuição Aleatória , Autoadministração , Maturidade Sexual
7.
Behav Brain Res ; 333: 83-89, 2017 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-28668281

RESUMO

Cocaine addiction is characterized by persistent craving and addicts frequently relapse even after long periods of abstinence. Exposure to stress can precipitate relapse in humans and rodents. Stress and drug use can lead to common alterations in synaptic plasticity and these commonalities may contribute to the ability of stress to elicit relapse. These common changes in synaptic plasticity are mediated, in part, by alterations in the trafficking and stabilization of AMPA receptors. Exposure to both cocaine and stress can lead to alterations in protein kinase C-mediated phosphorylation of GluA2 AMPA subunits and thus alter the trafficking of GluA2-containing AMPARs. However, it is not clear what role AMPAR trafficking plays in the interactions between stress and cocaine. The current study utilized a mouse with a point mutation within the GluA2 subunit c-terminus resulting in a disruption of PKC-mediated GluA2 phosphorylation to examine stress responsivity. Although no differences were seen in the response to a forced swim stress in naïve mice, GluA2 K882A knock-in mice exhibited an increased stress response following cocaine self-administration. Furthermore, we demonstrated that disrupting GluA2 phosphorylation increases vulnerability to stress-induced reinstatement of both cocaine seeking and cocaine-conditioned reward. Finally, GluA2 K882A knock-in mice exhibit an increased vulnerability to social defeat as indicated by increased social avoidance. Taken together these results indicate that disrupting GluA2 phosphorylation leads to increased responsivity to acute stress following cocaine exposure and increased vulnerability to chronic stress. These results highlight the GluA2 phosphorylation site as a novel target for the stress-related disorders.


Assuntos
Receptores de AMPA/metabolismo , Estresse Psicológico/metabolismo , Alanina/genética , Animais , Cocaína/toxicidade , Condicionamento Operante/efeitos dos fármacos , Condicionamento Operante/fisiologia , Modelos Animais de Doenças , Inibidores da Captação de Dopamina/toxicidade , Comportamento de Procura de Droga/efeitos dos fármacos , Comportamento de Procura de Droga/fisiologia , Extinção Psicológica/efeitos dos fármacos , Extinção Psicológica/fisiologia , Feminino , Regulação da Expressão Gênica/genética , Regulação da Expressão Gênica/fisiologia , Lisina/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Mutação/genética , Fosforilação/fisiologia , Proteína Quinase C/metabolismo , Receptores de AMPA/genética , Natação/psicologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...