Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Signal ; 17(849): eadk5736, 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39137246

RESUMO

Different ligands stabilize specific conformations of the angiotensin II type 1 receptor (AT1R) that direct distinct signaling cascades mediated by heterotrimeric G proteins or ß-arrestin. These different active conformations are thought to engage distinct intracellular transducers because of differential phosphorylation patterns in the receptor C-terminal tail (the "barcode" hypothesis). Here, we identified the AT1R barcodes for the endogenous agonist AngII, which stimulates both G protein activation and ß-arrestin recruitment, and for a synthetic biased agonist that only stimulates ß-arrestin recruitment. The endogenous and ß-arrestin-biased agonists induced two different ensembles of phosphorylation sites along the C-terminal tail. The phosphorylation of eight serine and threonine residues in the proximal and middle portions of the tail was required for full ß-arrestin functionality, whereas phosphorylation of the serine and threonine residues in the distal portion of the tail had little influence on ß-arrestin function. Similarly, molecular dynamics simulations showed that the proximal and middle clusters of phosphorylated residues were critical for stable ß-arrestin-receptor interactions. These findings demonstrate that ligands that stabilize different receptor conformations induce different phosphorylation clusters in the C-terminal tail as barcodes to evoke distinct receptor-transducer engagement, receptor trafficking, and signaling.


Assuntos
Receptor Tipo 1 de Angiotensina , Transdução de Sinais , beta-Arrestinas , Receptor Tipo 1 de Angiotensina/metabolismo , Receptor Tipo 1 de Angiotensina/química , Receptor Tipo 1 de Angiotensina/genética , Fosforilação , Humanos , beta-Arrestinas/metabolismo , beta-Arrestinas/genética , Células HEK293 , Simulação de Dinâmica Molecular , Angiotensina II/metabolismo
2.
Cardiovasc Res ; 119(5): 1117-1129, 2023 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-36534965

RESUMO

G protein-coupled receptors (GPCRs), comprising the largest superfamily of cell surface receptors, serve as fundamental modulators of cardiac health and disease owing to their key roles in the regulation of heart rate, contractile dynamics, and cardiac function. Accordingly, GPCRs are heavily pursued as drug targets for a wide variety of cardiovascular diseases ranging from heart failure, cardiomyopathy, and arrhythmia to hypertension and coronary artery disease. Recent advancements in understanding the signalling mechanisms, regulation, and pharmacological properties of GPCRs have provided valuable insights that will guide the development of novel therapeutics. Herein, we review the cellular signalling mechanisms, pathophysiological roles, and pharmacological developments of the major GPCRs in the heart, highlighting the ß-adrenergic, muscarinic, and angiotensin receptors as exemplar subfamilies.


Assuntos
Insuficiência Cardíaca , Receptores Acoplados a Proteínas G , Humanos , Receptores Acoplados a Proteínas G/metabolismo , Coração , Transdução de Sinais , Receptores de Superfície Celular , Insuficiência Cardíaca/tratamento farmacológico
3.
J Cardiovasc Aging ; 2(3)2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35891703

RESUMO

Introduction: The adult heart lacks the regenerative capacity to self-repair. Serum response factor (SRF) is essential for heart organogenesis, sarcomerogenesis, and contractility. SRF interacts with co-factors, such as NKX2.5 and GATA4, required for cardiac specified gene activity. ETS factors such as ELK1 interact with SRF and drive cell replication. To weaken SRF interactions with NKX2.5 and GATA4, one mutant, SRF153(A3) named STEMIN, did not bind CArG boxes, yet induced stem cell factors such as NANOG and OCT4, cardiomyocyte dedifferentiation, and cell cycle reentry. The mutant YAP5SA of the Hippo pathway also promotes cardiomyocyte proliferation and growth. Aim: Infarcted adult mouse hearts were injected with translatable STEMIN and YAP5SA mmRNA to evaluate their clinical potential. Methods and Results: Mice were pulsed one day later with alpha-EDU and then heart sections were DAPI stained. Replicating cells were identified by immuno-staining against members of the DNA replisome pathway that mark entry to S phase of the cell cycle. Echocardiography was used to determine cardiac function following infarcts and mRNA treatment. To monitor cardiac wall repair, microscopic analysis was performed, and the extent of myocardial fibrosis was analyzed for immune cell infiltration. Injections of STEMIN and YAP5SA mmRNA into the left ventricles of infarcted adult mice promoted a greater than 17-fold increase in the DAPI stained and alpha-EDU marked cardiomyocyte nuclei, within a day. We observed de novo expression of phospho-histone H3, ORC2, MCM2, and CLASPIN. Cardiac function was significantly improved by four weeks post-infarct, and fibrosis and immune cell infiltration were diminished in hearts treated with STEMIN and YAP5SA mmRNA than each alone. Conclusion: STEMIN and YAP5SA mmRNA improved cardiac function and myocardial fibrosis in left ventricles of infarcted adult mice. The combinatorial use of mmRNA encoding STEMIN and YAP5SA has the potential to become a powerful clinical strategy to treat human heart disease.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA