Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 87
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Colloid Interface Sci ; 664: 1031-1041, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38521004

RESUMO

In this study, we explored the use of lipid mesophases (LMPs) as a biocompatible and biodegradable material for sustained drug delivery. Our hypothesis centered on leveraging the high surface-to-volume ratio of LMP-based beads to enhance strength, stability, and surface interaction compared to the LMP bulk gel. To modulate drug release, we introduced antioxidant vitamin E into the beads, influencing mesophase topologies and controlling drug diffusion coefficients. Four drugs with distinct chemical properties and intended for three different pathologies and administration routes were successfully loaded into the beads with a drug entrapment efficiency exceeding 80 %. Notably, our findings revealed sustained drug release, irrespective of the drugs' chemical properties, culminating in the development of an injectable formulation. This formulation allows direct administration into the target site, minimizing systemic exposure, and thereby mitigating adverse effects. Our approach demonstrates the potential of LMP-based beads for tailored drug delivery systems with broad applications in diverse therapeutic scenarios.


Assuntos
Antioxidantes , Sistemas de Liberação de Medicamentos , Sistemas de Liberação de Medicamentos/métodos , Preparações Farmacêuticas , Liberação Controlada de Fármacos , Lipídeos
2.
Eur J Pharm Biopharm ; 194: 49-61, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38029941

RESUMO

Rhabdomyosarcoma (RMS) is the most common pediatric soft tissue sarcoma. More effective and less toxic therapies are urgently needed for high-risk patients. Peptide-guided targeted drug delivery can increase the therapeutic index of encapsulated drugs and improve patients' well-being. To apply this strategy to RMS, we identified the peptide F3 in a screening for peptides binding to RMS cells surface. F3 binds to nucleolin, which is present on the surface of RMS cells and is abundantly expressed at the mRNA level in RMS patients' biopsies compared to healthy tissues. We developed a rapid microfluidic formulation of F3-decorated PEGylated liposomes and remote loading of the chemotherapeutic drug vincristine. Size, surface charge, drug loading and retention of targeted and control liposomes were studied. Enhanced cellular binding and uptake were observed in three different nucleolin-positive RMS cell lines. Importantly, F3-functionalized liposomes loaded with vincristine were up to 11 times more cytotoxic than non-targeted liposomes for RMS cell lines. These results demonstrate that F3-functionalized liposomes are promising for targeted drug delivery to RMS and warrant further in vivo investigations.


Assuntos
Lipossomos , Rabdomiossarcoma , Criança , Humanos , Lipossomos/metabolismo , Nucleolina , Vincristina/uso terapêutico , Linhagem Celular Tumoral , Peptídeos/metabolismo , Rabdomiossarcoma/tratamento farmacológico , Rabdomiossarcoma/metabolismo
3.
Eur J Pharm Biopharm ; 193: 218-226, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37956785

RESUMO

In an ideal world, pharmaceutical drugs would have infinite shelf life, no susceptibility to degradation, chemical reactions or loss of efficacy. In reality, these processes occur, however, making it desirable to extend a drugs' shelf life. Nucleic acid-based drugs are most commonly stored as aqueous suspension where they are vulnerable to microbial growth and degradation processes. Drying procedures, such as lyophilization and spray drying, help to reduce the products' residual moisture while increasing the products' shelf life and stability. The present study was designed to evaluate 90 days of storage of spray-dried siRNA-lipid nanoparticles (LNPs) at 4 °C and 25 °C. An updated Onpattro® composition modified with a positively charged helper lipid was used as the LNP carrier system. In an attempt to further reduce the residual moisture of our previously reported formulations, all LNP samples were subjected to a secondary drying step in the spray drying tower for 20 min. The measurement of physicochemical properties of spray-dried and subsequently dried LNPs resulted in sizes of 180 nm, PDI values of 0.1-0.15 and zeta potentials of + 3 mV. Spray drying resulted in residual moisture levels of 3.6-4 % and was reduced by subsequent drying to 2.8-3.1 %. Aerodynamic properties after storage showed discrepancies depending on the storage conditions. MMADs remained at 2.8 µm when stored at 4 °C, whereas an increase to 5 µm at 25 °C was observed. Subsequent drying led to sizes of 3.6-3.8 µm, independent of the storage conditions. Spray-dried LNPs maintained bioactivity resulting in > 95 % protein downregulation and confirming the lack of cytotoxic effects in a lung adenocarcinoma cell line. Furthermore, the spray-dried and subsequently dried LNPs stored for 3 months at 4 °C and 25 °C achieved up to 50 % gene silencing of the house-keeping gene GAPDH after deposition on the mucus layer of Calu-3 cells. This study confirms the stability of spray-dried and subsequently dried LNPs over at least 90 days at 4 °C and 25 °C emphasizing the potential of dry powder inhalation of RNA-loaded LNPs as a therapy option for pulmonary diseases.


Assuntos
Dessecação , Nanopartículas , Administração por Inalação , Nanopartículas/química , RNA Interferente Pequeno , Pós/química
4.
Artigo em Inglês | MEDLINE | ID: mdl-38006449

RESUMO

The peritoneal cavity offers an attractive administration route for challenging-to-treat diseases, such as peritoneal carcinomatosis, post-surgical adhesions, and peritoneal fibrosis. Achieving a uniform and prolonged drug distribution throughout the entire peritoneal space, though, is difficult due to high clearance rates, among others. To address such an unmet clinical need, alternative drug delivery approaches providing sustained drug release, reduced clearance rates, and a patient-centric strategy are required. Here, we describe the development of a 3D-printed composite platform for the sustained release of the tyrosine kinase inhibitor gefitinib (GEF), a small molecule drug with therapeutic applications for peritoneal metastasis and post-surgical adhesions. We present a robust method for the production of biodegradable liposome-loaded hydrogel microbeads that can overcome the pharmacokinetic limitations of small molecules with fast clearance rates, a current bottleneck for the intraperitoneal (IP) administration of these therapeutics. By means of an electromagnetic droplet printhead, we 3D printed microbeads employing an alginate-based ink loaded with GEF-containing multilamellar vesicles (MLVs). The sustained release of GEF from microbeads was demonstrated. In vitro studies on an immortalized human hepatic cancer cell line (Huh-7) proved concentration-dependent cell death. These findings demonstrate the potential of 3D-printed alginate microbeads containing liposomes for delivering small drug compounds into the peritoneum, overcoming previous limitations of IP drug delivery.

5.
Biomed Pharmacother ; 168: 115819, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37939613

RESUMO

Osteoarthritis (OA) is a widespread joint condition affecting millions globally, presenting a growing socioeconomic burden thus making the development of more effective therapeutic strategies crucial. This review emphasizes recent advancements in lipid-based drug delivery systems (DDSs) for intra-articular administration of OA therapeutics, encompassing non-steroidal anti-inflammatory drugs, corticosteroids, small molecule disease-modifying OA drugs, and RNA therapeutics. Liposomes, lipid nanoparticles, lipidic mesophases, extracellular vesicles and composite systems exhibit enhanced stability, targeted delivery, and extended joint retention, which contribute to improved therapeutic outcomes and minimized systemic drug exposure. Although active targeting strategies hold promise, further research is needed to assess their targeting efficiency in physiologically relevant conditions. Simultaneously, multifunctional DDSs capable of delivering combinations of distinct therapeutic classes offer synergistic effects and superior OA treatment outcomes. The development of such long-acting systems that resist rapid clearance from the joint space is crucial, where particle size and targeting capabilities emerge as vital factors. Additionally, combining cartilage lubrication properties with sustained drug delivery has demonstrated potential in animal models, meriting further investigation in human clinical trials. This review highlights the crucial need for direct, head-to-head comparisons of novel DDSs with standard treatments, particularly within the same drug class. These comparisons are essential in accurately evaluating their effectiveness, safety, and clinical applicability, and are set to significantly shape the future of OA therapy.


Assuntos
Sistemas de Liberação de Medicamentos , Osteoartrite , Animais , Humanos , Osteoartrite/tratamento farmacológico , Anti-Inflamatórios não Esteroides/uso terapêutico , Resultado do Tratamento , Lipídeos/uso terapêutico
6.
Int J Pharm ; 646: 123473, 2023 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-37788730

RESUMO

Liver fibrosis is a condition characterized by the accumulation of extracellular matrix (ECM) arising from the myofibroblastic transdifferentiation of hepatic stellate cells (HSCs) occurring as the natural response to liver damage. To date, no pharmacological treatments have been specifically approved for liver fibrosis. We recently reported a beneficial effect of polyenylphosphatidylcholines (PPCs)-rich formulations in reverting fibrogenic features of HSCs. However, unsaturated phospholipids' properties pose a constant challenge to the development of tablets as preferred patient-centric dosage form. Profiting from the advantageous physical properties of the PPCs-rich Soluthin® S 80 M, we developed a tablet formulation incorporating 70% w/w of this bioactive lipid. Tablets were characterized via X-ray powder diffraction, thermogravimetry, and Raman confocal imaging, and passed the major compendial requirements. To mimic physiological absorption after oral intake, phospholipids extracted from tablets were reconstituted as protein-free chylomicron (PFC)-like emulsions and tested on the fibrogenic human HSC line LX-2 and on primary cirrhotic rat hepatic stellate cells (PRHSC). Lipids extracted from tablets and reconstituted in buffer or as PFC-like emulsions exerted the same antifibrotic effect on both activated LX-2 and PRHSCs as observed with plain S 80 M liposomes, showing that the manufacturing process did not interfere with the bioactivity of PPCs.


Assuntos
Excipientes , Fígado , Humanos , Ratos , Animais , Excipientes/farmacologia , Cirrose Hepática/tratamento farmacológico , Cirrose Hepática/patologia , Comprimidos/farmacologia , Células Estreladas do Fígado
7.
Adv Healthc Mater ; 12(30): e2300811, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37669775

RESUMO

A new therapeutic approach using cell-derived nanovesicles (cdNVs) is offered here to overcome the lack of effective treatments for liver fibrosis, a reversible chronic liver disease. To achieve this goal the formation and purification of cdNVs from untreated, quiescent-like, or activated LX-2 cells, an immortalized human hepatic stellate cell (HSC) line with key features of transdifferentiated HSCs are established. Analysis of the genotype and phenotype of naïve and transdifferentiated LX-2 cells activated through transforming growth factor beta 1, following treatment with cdNVs, reveals a concentration-dependent fibrosis regression. The beneficial fibrosis-resolving effects of cdNVs are linked to their biomolecular corona. Liposomes generated using lipids extracted from cdNVs exhibit a reduced antifibrotic response in perpetuated LX-2 cells and show a reduced cellular uptake. However, incubation with soluble factors collected during purification results in a new corona, thereby restoring fibrosis regression activity. Overall, cdNVs display encouraging therapeutic properties, making them a promising candidate for the development of liver fibrosis resolving therapeutics.


Assuntos
Cirrose Hepática , Fígado , Humanos , Cirrose Hepática/tratamento farmacológico , Fígado/metabolismo , Linhagem Celular , Fibrose , Células Estreladas do Fígado/metabolismo , Células Estreladas do Fígado/patologia
8.
J Colloid Interface Sci ; 650(Pt B): 1659-1670, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37494862

RESUMO

Liposomes show promise as biolubricants for damaged cartilage, but their small size results in low joint and cartilage retention. We developed a zinc ion-based liposomal drug delivery system for local osteoarthritis therapy, focusing on sustained release and tribological protection from phospholipid lubrication properties. Our strategy involved inducing aggregation of negatively charged liposomes with zinc ions to extend rapamycin (RAPA) release and improve cartilage lubrication. Liposomal aggregation occurred within 10 min and was irreversible, facilitating excess cation removal. The aggregates extended RAPA release beyond free liposomes and displayed irregular morphology influenced by RAPA. At nearly 100 µm, the aggregates were large enough to exceed the previously reported size threshold for increased joint retention. Tribological assessment on silicon surfaces and ex vivo porcine cartilage revealed the system's excellent protective ability against friction at both nano- and macro-scales. Moreover, RAPA was shown to attenuate the fibrotic response in human OA synovial fibroblasts. Our findings suggest the zinc ion-based liposomal drug delivery system has potential to enhance OA therapy through extended release and cartilage tribological protection, while also illustrating the impact of a hydrophobic drug like RAPA on liposome aggregation and morphology.


Assuntos
Cartilagem Articular , Osteoartrite , Humanos , Lipossomos/química , Fricção , Sirolimo/farmacologia , Fosfolipídeos , Osteoartrite/tratamento farmacológico , Lubrificação
9.
Nat Commun ; 14(1): 3489, 2023 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-37311749

RESUMO

Ulcerative colitis is a chronic inflammatory bowel disease that strongly affects patient quality of life. Side effects of current therapies necessitate new treatment strategies that maximise the drug concentration at the site of inflammation, while minimizing systemic exposure. Capitalizing on the biocompatible and biodegradable structure of lipid mesophases, we present a temperature-triggered in situ forming lipid gel for topical treatment of colitis. We show that the gel is versatile and can host and release drugs of different polarities, including tofacitinib and tacrolimus, in a sustained manner. Further, we demonstrate its adherence to the colonic wall for at least 6 h, thus preventing leakage and improving drug bioavailability. Importantly, we find that loading known colitis treatment drugs into the temperature-triggered gel improves animal health in two mouse models of acute colitis. Overall, our temperature-triggered gel may prove beneficial in ameliorating colitis and decreasing adverse effects associated with systemic application of immunosuppressive treatments.


Assuntos
Colite Ulcerativa , Colite , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Animais , Camundongos , Colite Ulcerativa/tratamento farmacológico , Qualidade de Vida , Temperatura , Colite/induzido quimicamente , Colite/tratamento farmacológico , Lipídeos
10.
Eur J Pharm Sci ; 188: 106501, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37339708

RESUMO

Gynaecological health is a neglected field of research that includes conditions such as endometriosis, uterine fibroids, infertility, viral and bacterial infections, and cancers. There is a clinical need to develop dosage forms for gynecological diseases that increase efficacy and reduce side effects and explore new materials with properties tailored to the vaginal mucosa and milieu. Here, we developed a 3D printed semisolid vaginal ovule containing pirfenidone, a repurposed drug candidate for endometriosis. Vaginal drug delivery allows direct targeting of the reproductive organs via the first uterine pass effect, but vaginal dosage forms can be challenging to self-administer and retain in situ for periods of more than 1-3 h. We show that a semisoft alginate-based vaginal suppository manufactured using semisolid extrusion additive manufacturing is superior to vaginal ovules made using standard excipients. The 3D-printed ovule showed a controlled release profile of pirfenidone in vitro in standard and biorelevant release tests, as well as better mucoadhesive properties ex vivo. An exposure time of 24 h of pirfenidone to a monolayer culture of an endometriotic epithelial cell line, 12Z, is necessary to reduce the cells' metabolic activity, which demonstrates the need for a sustained release formulation of pirfenidone. 3D printing allowed us to formulate mucoadhesive polymers into a semisolid ovule with controlled release of pirfenidone. This work enables further preclinical and clinical studies into vaginally administered pirfenidone to assess its efficacy as a repurposed endometriosis treatment.


Assuntos
Endometriose , Doenças Uterinas , Feminino , Humanos , Endometriose/tratamento farmacológico , Óvulo Vegetal , Preparações de Ação Retardada , Vagina , Impressão Tridimensional , Liberação Controlada de Fármacos , Comprimidos
11.
EBioMedicine ; 91: 104558, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37043871

RESUMO

BACKGROUND: Routes along the olfactory nerves crossing the cribriform plate that extend to lymphatic vessels within the nasal cavity have been identified as a critical cerebrospinal fluid (CSF) outflow pathway. However, it is still unclear how the efflux pathways along the nerves connect to lymphatic vessels or if any functional barriers are present at this site. The aim of this study was to anatomically define the connections between the subarachnoid space and the lymphatic system at the cribriform plate in mice. METHODS: PEGylated fluorescent microbeads were infused into the CSF space in Prox1-GFP reporter mice and decalcification histology was utilized to investigate the anatomical connections between the subarachnoid space and the lymphatic vessels in the nasal submucosa. A fluorescently-labelled antibody marking vascular endothelium was injected into the cisterna magna to demonstrate the functionality of the lymphatic vessels in the olfactory region. Finally, we performed immunostaining to study the distribution of the arachnoid barrier at the cribriform plate region. FINDINGS: We identified that there are open and direct connections from the subarachnoid space to lymphatic vessels enwrapping the olfactory nerves as they cross the cribriform plate towards the nasal submucosa. Furthermore, lymphatic vessels adjacent to the olfactory bulbs form a continuous network that is functionally connected to lymphatics in the nasal submucosa. Immunostainings revealed a discontinuous distribution of the arachnoid barrier at the olfactory region of the mouse. INTERPRETATION: Our data supports a direct bulk flow mechanism through the cribriform plate allowing CSF drainage into nasal submucosal lymphatics in mice. FUNDING: This study was supported by the Swiss National Science Foundation (310030_189226), Dementia Research Switzerland-Synapsis Foundation, the Heidi Seiler Stiftung and the Fondation Dr. Corinne Schuler.


Assuntos
Vasos Linfáticos , Nervo Olfatório , Animais , Camundongos , Osso Etmoide , Sistema Linfático/metabolismo , Espaço Subaracnóideo/metabolismo
12.
Eur J Pharm Biopharm ; 182: 32-40, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36470521

RESUMO

Chronic hepatic diseases often compromise liver function and are directly responsible for up to two million yearly deaths world-wide. There are yet no treatment options to solve this global medical need. Experimental drugs elafibranor (Ela) and obeticholic acid (OA) appeared promising in numerous earlier studies, but they recently struggled to show significant benefits in patients. Little is known on the drugs' impact on hepatic stellate cells (HSCs), key players in liver fibrogenesis. We recently reported a beneficial effect of polyenylphosphatidylcholines (PPCs)-rich formulations in reverting fibrogenic features of HSCs, including differences in their extracellular vesicles (EVs). Here, we newly formulated Ela and OA in PPC liposomes and evaluated their performance on the LX-2 (human HSC) cell line through our rigorous methods of EV-analysis, now expanded to include lipidomics. We show that direct treatments with Ela and OA increase EV-associated secreted protein acidic and cysteine rich (SPARC), a matricellular protein overexpressed in fibrogenesis. However, our results suggest that this potentially damaging drugs' action to HSCs could be mitigated when delivering them with lipid-based formulations, most notably with a PPC-rich phospholipid inducing specific changes in the cellular and EV phospholipid composition. Thus, EV analysis substantially deepens evaluations of drug performances and delivery strategies.


Assuntos
Vesículas Extracelulares , Células Estreladas do Fígado , Humanos , Cirrose Hepática/tratamento farmacológico , Fosfolipídeos/metabolismo , Vesículas Extracelulares/metabolismo , Osteonectina/metabolismo
13.
Eur J Pharm Biopharm ; 181: 300-309, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36427675

RESUMO

By direct deposition of the drug at the local site of action, injectable depot formulations - intended for treatment of a local disease or for local intervention - are designed to limit the immediate exposure of the active principle at a systemic level and to reduce the frequency of administration. To overcome known drawbacks in the production of some marketed phospholipid-based depots, here we propose to manufacture drug-loaded negatively charged liposomes through conventional technologies and to control their aggregation mixing a solution of divalent cations prior to administration. We identified phosphatidylglycerol (PG) as the most suitable phospholipid for controlled aggregation of the liposomes and to modulate the release of the anesthetic bupivacaine (BUP) from liposomal depots. In vivo imaging of the fluorescently-labelled liposomes showed a significantly higher retention of the PG liposomes at the injection site with respect to zwitterionic ones. In situ mixing of PG liposomes with calcium salts significantly extended the area under the curve of BUP in plasma compared to the non-depot system. Overall, controlling the aggregation of negatively charged liposomes with divalent cations not only modulated the particle clearance from the injection site but also the release in vivo of a small amphipathic drug such as BUP.


Assuntos
Bupivacaína , Fosfolipídeos , Preparações de Ação Retardada
14.
Commun Biol ; 5(1): 1155, 2022 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-36310239

RESUMO

Uncovering the complex cellular mechanisms underlying hepatic fibrogenesis could expedite the development of effective treatments and noninvasive diagnosis for liver fibrosis. The biochemical complexity of extracellular vesicles (EVs) and their role in intercellular communication make them an attractive tool to look for biomarkers as potential alternative to liver biopsies. We developed a solid set of methods to isolate and characterize EVs from differently treated human hepatic stellate cell (HSC) line LX-2, and we investigated their biological effect onto naïve LX-2, proving that EVs do play an active role in fibrogenesis. We mined our proteomic data for EV-associated proteins whose expression correlated with HSC treatment, choosing the matricellular protein SPARC as proof-of-concept for the feasibility of fluorescence nanoparticle-tracking analysis to determine an EV-based HSCs' fibrogenic phenotype. We thus used EVs to directly evaluate the efficacy of treatment with S80, a polyenylphosphatidylcholines-rich lipid, finding that S80 reduces the relative presence of SPARC-positive EVs. Here we correlated the cellular response to lipid-based antifibrotic treatment to the relative presence of a candidate protein marker associated with the released EVs. Along with providing insights into polyenylphosphatidylcholines treatments, our findings pave the way for precise and less invasive diagnostic analyses of hepatic fibrogenesis.


Assuntos
Vesículas Extracelulares , Proteômica , Humanos , Células Estreladas do Fígado/metabolismo , Vesículas Extracelulares/metabolismo , Cirrose Hepática/diagnóstico , Cirrose Hepática/tratamento farmacológico , Cirrose Hepática/metabolismo , Biomarcadores/metabolismo , Lipídeos , Osteonectina/metabolismo
15.
J Control Release ; 351: 137-150, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36126785

RESUMO

While all the siRNA drugs on the market target the liver, the lungs offer a variety of currently undruggable targets which could potentially be treated with RNA therapeutics. Hence, local, pulmonary delivery of RNA nanoparticles could finally enable delivery beyond the liver. The administration of RNA drugs via dry powder inhalers offers many advantages related to physical, chemical and microbial stability of RNA and nanosuspensions. The present study was therefore designed to test the feasibility of engineering spray dried lipid nanoparticle (LNP) powders. Spray drying was performed using 5% lactose solution (m/V), and the targets were set to obtain nanoparticle sizes after redispersion of spray-dried powders around 150 nm, a residual moisture level below 5%, and RNA loss below 15% at maintained RNA bioactivity. The LNPs consisted of an ionizable cationic lipid which is a sulfur-containing analog of DLin-MC3-DMA, a helper lipid, cholesterol, and PEG-DMG encapsulating siRNA. Prior to the spray drying, the latter process was simulated with a novel dual emission fluorescence spectroscopy method to preselect the highest possible drying temperature and excipient solution maintaining LNP integrity and stability. Through characterization of physicochemical and aerodynamic properties of the spray dried powders, administration criteria for delivery to the lower respiratory tract were fulfilled. Spray dried LNPs penetrated the lung mucus layer and maintained bioactivity for >90% protein downregulation with a confirmed safety profile in a lung adenocarcinoma cell line. Additionally, the spray dried LNPs successfully achieved up to 50% gene silencing of the house keeping gene GAPDH in ex vivo human precision-cut lung slices at without increasing cytokine levels. This study verifies the successful spray drying procedure of LNP-siRNA systems maintaining their integrity and mediating strong gene silencing efficiency on mRNA and protein levels both in vitro and ex vivo. The successful spray drying procedure of LNP-siRNA formulations in 5% lactose solution creates a novel siRNA-based therapy option to target respiratory diseases such as lung cancer, asthma, COPD, cystic fibrosis and viral infections.


Assuntos
Lactose , Nanopartículas , Humanos , Pós/química , RNA Interferente Pequeno , Administração por Inalação , Secagem por Atomização , Tamanho da Partícula , Aerossóis e Gotículas Respiratórios , Nanopartículas/química , Inaladores de Pó Seco , Pulmão , Lipídeos , Aerossóis/química
16.
J Mater Chem B ; 10(20): 3876-3885, 2022 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-35470843

RESUMO

Lipid mesophases are able to incorporate and release a plethora of molecules, spanning from hydrophobic drugs to small hydrophilic proteins and therefore they have been widely used as drug delivery systems. However, their 3-5 nm water channels do not allow the release of large hydrophilic molecules such as monoclonal antibodies and therapeutic proteins. To overcome this major geometrical constraint, we designed a gel by mixing monoacylglycerol lipids, generally recognized as safe for human and/or animal use by FDA, and phospholipids, to obtain a material with swollen water channels suitable to host and further release macromolecules. Apoferritin, a 12 nm nanocage protein with intrinsic tumor-targeting properties able to incorporate several molecules, was selected here as the hydrophilic model protein to be embedded in the biocompatible gel. When immersed completely in the release media, mesophases with a swollen water channel of 22 nm, composed of monoolein and doped with 5 mole% of DOPS and 10 mole% of Chol allowed us to achieve a protein release of 60%, which is 120 times higher with respect to that obtained by employing non swollen-LMPs composed only of monoolein. Thus, the formulation can be administered locally to the rectal or vaginal mucosa, reducing the drawbacks often associated with the parenteral administration of bio-therapeutics. This approach would pave the way for the local application of other biomacromolecules (including human ferritin, monoclonal antibodies and antibody drug-conjugates) in those diseases easily reachable by a local application such as rectal or vaginal cancer.


Assuntos
Apoferritinas , Sistemas de Liberação de Medicamentos , Animais , Anticorpos Monoclonais , Interações Hidrofóbicas e Hidrofílicas , Substâncias Macromoleculares
17.
J Mater Chem B ; 9(8): 2092-2106, 2021 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-33595041

RESUMO

The lack of accurate and easily applicable methods for the diagnosis of liver fibrosis, a disease characterized by an accumulation of the extracellular matrix released by activated hepatic stellate cells (HSCs), has been a major limitation for the clinical management of liver diseases. The identification of biomarkers specific to liver microstructure alterations, combined with a non-invasive optical imaging modality, could guide clinicians towards a therapeutic strategy. In this study, structural information of the insulin-like growth factor 2 receptor (IGF2R), an overexpressed protein on activated HSCs, was used for in silico screening of novel IGF2R-specific peptide ligands. Molecular dynamics simulations, followed by computational alanine scanning of the IGF2R/IGF2 complex, led to the identification of a putative peptide sequence containing the most relevant amino acids for the receptor-ligand interaction (IGF2 E12-C21). The Residue Scan tool, implemented in the MOE software, was then used to optimize the binding affinity of this sequence by amino acid mutations. The designed peptides and their associated scrambled sequences were fluorescently labelled and their binding affinity to LX-2 cells (model for activated human HSCs) was tested using flow cytometry and confocal microscopy. In vitro binding was verified for all sequences (KD ≤ 13.2 µM). With respect to the putative binding sequence, most mutations led to an increased affinity. All sequences have shown superior binding compared to their associated scrambled sequences. Using HPLC, all peptides were tested in vitro for their proteolytic resistance and showed a stability of ≥60% intact after 24 h at 37 °C in 50% v/v FBS. In view of their prospective diagnostic application, a comparison of binding affinity was performed in perpetuated and quiescent-like LX-2 cells. Furthermore, the IGF2R expression for different cell phenotypes was analysed by a quantitative mass spectrometric approach. Our peptides showed increased binding to the perpetuated cell state, indicating their good selectivity for the diagnostically relevant phenotype. In summary, the increased binding affinity of our peptides towards perpetuated LX-2 cells, as well as the satisfactory proteolytic stability, proves that the in silico designed sequences offer a new potential strategy for the targeting of hepatic fibrosis.


Assuntos
Transdiferenciação Celular , Simulação por Computador , Células Estreladas do Fígado/patologia , Cirrose Hepática/patologia , Peptídeos/metabolismo , Receptor IGF Tipo 2/metabolismo , Linhagem Celular , Humanos , Fator de Crescimento Insulin-Like II/química , Fator de Crescimento Insulin-Like II/metabolismo , Ligantes , Simulação de Dinâmica Molecular , Peptídeos/química , Conformação Proteica , Estabilidade Proteica , Receptor IGF Tipo 2/química
18.
Photoacoustics ; 21: 100239, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33520651

RESUMO

In vivo near-infrared (NIR) photoacoustic imaging (PAI) studies using novel contrast agents require validation, often via fluorescence imaging. Bioconjugation of NIR dyes to proteins is a versatile platform to obtain contrast agents for specific biomedical applications. Nonfluorescent NIR dyes with higher photostability present advantages for quantitative PAI, compared to most fluorescent NIR dyes. However, they don't provide a fluorescence signal required for fluorescence imaging. Here, we designed a hybrid PA-fluorescent contrast agent by conjugating albumin with a NIR nonfluorescent dye (QC-1) and a visible spectrum fluorescent dye, a BODIPY derivative. The new hybrid tracer QC-1/BSA/BODIPY (QBB) had a low minimum detectable concentration (2.5µM), a steep linear range (2.4-54.4 µM; slope 3.39 E -5), and high photostability. Tracer signal was measured in vivo using PAI to quantify its drainage from eye to the neck and its localization in the neck lymph node was validated with postmortem fluorescence imaging.

19.
Biochim Biophys Acta Gen Subj ; 1865(4): 129559, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-32084396

RESUMO

BACKGROUND: Extracellular vesicles (EVs) are a diverse group of membrane-bound nanovesicles potentially released by every cell. With the liver's unique ensemble of cells and its fundamental physiological tasks, elucidating the role of EV-mediated hepatic cellular crosstalk and their role in different pathologies has been gaining the attention of many scientists. SCOPE OF REVIEW: The present review shifts the perspective into practice: we aim to critically discuss the methods used to purify and to biochemically analyse EVs from specific liver resident cells, including hepatocytes, hepatic stellate cells, cholangiocytes, liver sinusoidal endothelial cells, Kupffer cells, liver stem cells. The review offers a reference guide to current approaches. MAJOR CONCLUSIONS: Strategies for EV isolation and characterization are as varied as the research groups performing them. We present main advantages and disadvantages for the methods, highlighting common causes for concern, such as FBS handling, reporting of cell viability, EV yield and storage, differences in differential centrifugations, suboptimal method descriptions, and method transferability. We both looked at how adaptable the research between human and rodent cells in vitro is, and also assessed how well either of them translates to ex vivo settings. GENERAL SIGNIFICANCE: We reviewed methodological practices for the isolation and analysis of liver-derived EVs, making a cell type specific user guide that shows where to start, what has worked so far and to what extent. We critically discussed room for improvement, placing a particular focus on working towards a potential standardization of methods.


Assuntos
Vesículas Extracelulares/química , Fígado/citologia , Animais , Centrifugação/métodos , Células Endoteliais/química , Células Endoteliais/citologia , Células Estreladas do Fígado/química , Células Estreladas do Fígado/citologia , Hepatócitos/química , Hepatócitos/citologia , Humanos , Células de Kupffer/química , Células de Kupffer/citologia , Fígado/química , Células-Tronco/química , Células-Tronco/citologia
20.
Cancers (Basel) ; 12(11)2020 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-33182650

RESUMO

The fibroblast growth factor receptor 4 (FGFR4) is overexpressed in rhabdomyosarcoma (RMS) and represents a promising target for treatments based on specific and efficient antibodies. Despite progress, there is an urgent need for targeted treatment options to improve survival rates, and to limit long-term side effects. From phage display libraries we selected FGFR4-specific single-domain antibodies (sdAb) binding to recombinant FGFR4 and validated them by flow cytometry, surface plasmon resonance, and fluorescence microscopy. The specificity of the selected sdAb was verified on FGFR4-wild type and FGFR4-knock out cells. FGFR4-sdAb were used to decorate vincristine-loaded liposomes and to generate chimeric antigen receptor (CAR) T cells. First, incubation of RMS cells with FGFR4-sdAb revealed that FGFR4-sdAb can block FGF19-FGFR4 signaling via the MAPK pathway and could therefore serve as therapeutics for FGFR4-dependent cancers. Second, FGFR4-targeted vincristine-loaded liposomes bound specifically to RMS cells and were internalized by the receptor, demonstrating the potential for active drug delivery to the tumor. Third, FGFR4-CAR T cells, generated with one sdAb candidate, demonstrated strong and specific cytotoxicity against FGFR4 expressing RMS cells. We selected novel FGFR4-sdAb with high specificity and nano- to picomolar affinities for FGFR4 which have the potential to enable multiple FGFR4-targeted cancer therapy approaches.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...