Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Cell Biol ; 222(3)2023 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-36562752

RESUMO

In recent years, Focused Ion Beam Scanning Electron Microscopy (FIB-SEM) has emerged as a flexible method that enables semi-automated volume ultrastructural imaging. We present a toolset for adherent cells that enables tracking and finding cells, previously identified in light microscopy (LM), in the FIB-SEM, along with the automatic acquisition of high-resolution volume datasets. We detect the underlying grid pattern in both modalities (LM and EM), to identify common reference points. A combination of computer vision techniques enables complete automation of the workflow. This includes setting the coincidence point of both ion and electron beams, automated evaluation of the image quality and constantly tracking the sample position with the microscope's field of view reducing or even eliminating operator supervision. We show the ability to target the regions of interest in EM within 5 µm accuracy while iterating between different targets and implementing unattended data acquisition. Our results demonstrate that executing volume acquisition in multiple locations autonomously is possible in EM.


Assuntos
Imageamento Tridimensional , Microscopia Eletrônica de Volume , Microscopia Eletrônica de Varredura , Imageamento Tridimensional/métodos , Software
3.
Acta Neuropathol ; 142(6): 961-984, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34514546

RESUMO

Mutations in glucocerebrosidase (GBA) are the most prevalent genetic risk factor for Lewy body disorders (LBD)-collectively Parkinson's disease, Parkinson's disease dementia and dementia with Lewy bodies. Despite this genetic association, it remains unclear how GBA mutations increase susceptibility to develop LBD. We investigated relationships between LBD-specific glucocerebrosidase deficits, GBA-related pathways, and α-synuclein levels in brain tissue from LBD and controls, with and without GBA mutations. We show that LBD is characterised by altered sphingolipid metabolism with prominent elevation of ceramide species, regardless of GBA mutations. Since extracellular vesicles (EV) could be involved in LBD pathogenesis by spreading disease-linked lipids and proteins, we investigated EV derived from post-mortem cerebrospinal fluid (CSF) and brain tissue from GBA mutation carriers and non-carriers. EV purified from LBD CSF and frontal cortex were heavily loaded with ceramides and neurodegeneration-linked proteins including alpha-synuclein and tau. Our in vitro studies demonstrate that LBD EV constitute a "pathological package" capable of inducing aggregation of wild-type alpha-synuclein, mediated through a combination of alpha-synuclein-ceramide interaction and the presence of pathological forms of alpha-synuclein. Together, our findings indicate that abnormalities in ceramide metabolism are a feature of LBD, constituting a promising source of biomarkers, and that GBA mutations likely accelerate the pathological process occurring in sporadic LBD through endolysosomal deficiency.


Assuntos
Ceramidas/metabolismo , Vesículas Extracelulares/metabolismo , Transtornos Parkinsonianos/metabolismo , Transtornos Parkinsonianos/patologia , alfa-Sinucleína/metabolismo , Glucosilceramidase/genética , Humanos , Mutação , Transtornos Parkinsonianos/genética , Agregação Patológica de Proteínas/genética , Agregação Patológica de Proteínas/metabolismo
4.
Int J Mol Sci ; 21(17)2020 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-32887372

RESUMO

Plasma lipoproteins are important carriers of cholesterol and have been linked strongly to cardiovascular disease (CVD). Our study aimed to achieve fine-grained measurements of lipoprotein subpopulations such as low-density lipoprotein (LDL), lipoprotein(a) (Lp(a), or remnant lipoproteins (RLP) using electron microscopy combined with machine learning tools from microliter samples of human plasma. In the reported method, lipoproteins were absorbed onto electron microscopy (EM) support films from diluted plasma and embedded in thin films of methyl cellulose (MC) containing mixed metal stains, providing intense edge contrast. The results show that LPs have a continuous frequency distribution of sizes, extending from LDL (> 15 nm) to intermediate density lipoprotein (IDL) and very low-density lipoproteins (VLDL). Furthermore, mixed metal staining produces striking "positive" contrast of specific antibodies attached to lipoproteins providing quantitative data on apolipoprotein(a)-positive Lp(a) or apolipoprotein B (ApoB)-positive particles. To enable automatic particle characterization, we also demonstrated efficient segmentation of lipoprotein particles using deep learning software characterized by a Mask Region-based Convolutional Neural Networks (R-CNN) architecture with transfer learning. In future, EM and machine learning could be combined with microarray deposition and automated imaging for higher throughput quantitation of lipoproteins associated with CVD risk.


Assuntos
Apolipoproteínas B/sangue , Apoproteína(a)/sangue , Aprendizado de Máquina , Metilcelulose/química , Microscopia Eletrônica/métodos , Apolipoproteínas B/imunologia , Apoproteína(a)/imunologia , Humanos
5.
Nat Commun ; 8: 13932, 2017 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-28051091

RESUMO

Microsporidians are obligate intracellular parasites that have minimized their genome content and sub-cellular structures by reductive evolution. Here, we demonstrate that cristae-deficient mitochondria (mitosomes) of Trachipleistophora hominis are the functional site of iron-sulfur cluster (ISC) assembly, which we suggest is the essential task of these organelles. Cell fractionation, fluorescence imaging and immunoelectron microscopy demonstrate that mitosomes contain a complete pathway for [2Fe-2S] cluster biosynthesis that we biochemically reconstituted using purified mitosomal ISC proteins. The T. hominis cytosolic iron-sulfur protein assembly (CIA) pathway includes the essential Cfd1-Nbp35 scaffold complex that assembles a [4Fe-4S] cluster as shown by spectroscopic methods in vitro. Phylogenetic analyses reveal that the ISC and CIA pathways are predominantly bacterial, but their cytosolic and nuclear target Fe/S proteins are mainly archaeal. This mixed evolutionary history of Fe/S-related proteins and pathways, and their strong conservation among highly reduced parasites, provides compelling evidence for the ancient chimeric ancestry of eukaryotes.


Assuntos
Evolução Biológica , Proteínas Fúngicas/biossíntese , Proteínas Ferro-Enxofre/biossíntese , Mitocôndrias/metabolismo , Pansporablastina/metabolismo , Núcleo Celular/metabolismo , Citosol/metabolismo , Proteínas Fúngicas/genética , Proteínas Ferro-Enxofre/genética , Pansporablastina/genética , Filogenia
7.
Histochem Cell Biol ; 145(2): 163-73, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26671787

RESUMO

Neurite growth is central to the formation and differentiation of functional neurons, and recently, an essential role for phospholipase C-η2 (PLCη2) in neuritogenesis was revealed. Here we investigate the function of PLCη2 in neuritogenesis using Neuro2A cells, which upon stimulation with retinoic acid differentiate and form neurites. We first investigated the role of the PLCη2 calcium-binding EF-hand domain, a domain that is known to be required for PLCη2 activation. To do this, we quantified neurite outgrowth in Neuro2A cells, stably overexpressing wild-type PLCη2 and D256A (EF-hand) and H460Q (active site) PLCη2 mutants. Retinoic acid-induced neuritogenesis was highly dependent on PLCη2 activity, with the H460Q mutant exhibiting a strong dominant-negative effect. Expression of the D256A mutant had little effect on neurite growth relative to the control, suggesting that calcium-directed activation of PLCη2 is not essential to this process. We next investigated which cellular compartments contain endogenous PLCη2 by comparing immunoelectron microscopy signals over control and knockdown cell lines. When signals were analyzed to reveal specific labeling for PLCη2, it was found to be localized predominantly over the nucleus and cytosol. Furthermore in these compartments (and also in growing neurites), a proximity ligand assay revealed that PLCη2 specifically interacts with LIMK-1 in Neuro2A cells. Taken together, these data emphasize the importance of the PLCη2 EF-hand domain and articulation of PLCη2 with LIMK-1 in regulating neuritogenesis.


Assuntos
Nucléolo Celular/metabolismo , Citoplasma/metabolismo , Quinases Lim/metabolismo , Neuritos/efeitos dos fármacos , Fosfoinositídeo Fosfolipase C/metabolismo , Tretinoína/farmacologia , Animais , Processos de Crescimento Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Nucléolo Celular/química , Citoplasma/química , Camundongos , Fosfoinositídeo Fosfolipase C/genética , Ligação Proteica
8.
EMBO J ; 34(17): 2272-90, 2015 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-26139536

RESUMO

Lysosomes are essential organelles that function to degrade and recycle unwanted, damaged and toxic biological components. Lysosomes also act as signalling platforms in activating the nutrient-sensing kinase mTOR. mTOR regulates cellular growth, but it also helps to maintain lysosome identity by initiating lysosomal tubulation through a process termed autophagosome-lysosome reformation (ALR). Here we identify a lysosomal pool of phosphatidylinositol 3-phosphate that, when depleted by specific inhibition of the class III phosphoinositide 3-kinase VPS34, results in prolonged lysosomal tubulation. This tubulation requires mTOR activity, and we identified two direct mTOR phosphorylation sites on UVRAG (S550 and S571) that activate VPS34. Loss of these phosphorylation sites reduced VPS34 lipid kinase activity and resulted in an increase in number and length of lysosomal tubules. In cells in which phosphorylation at these UVRAG sites is disrupted, the result of impaired lysosomal tubulation alongside ALR activation is massive cell death. Our data imply that ALR is critical for cell survival under nutrient stress and that VPS34 is an essential regulatory element in this process.


Assuntos
Classe III de Fosfatidilinositol 3-Quinases/metabolismo , Lisossomos/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Animais , Classe III de Fosfatidilinositol 3-Quinases/genética , Células HEK293 , Células HeLa , Humanos , Lisossomos/genética , Camundongos , Complexos Multiproteicos/genética , Complexos Multiproteicos/metabolismo , Fosforilação/fisiologia , Serina-Treonina Quinases TOR/genética , Proteínas Supressoras de Tumor/genética
9.
J Anat ; 226(4): 309-21, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25753334

RESUMO

The terms morphome and morphomics are not new but, recently, a group of morphologists and cell biologists has given them clear definitions and emphasised their integral importance in systems biology. By analogy to other '-omes', the morphome refers to the distribution of matter within 3-dimensional (3D) space. It equates to the totality of morphological features within a biological system (virus, single cell, multicellular organism or populations thereof) and morphomics is the systematic study of those structures. Morphomics research has the potential to generate 'big data' because it includes all imaging techniques at all levels of achievable resolution and all structural scales from gross anatomy and medical imaging, via optical and electron microscopy, to molecular characterisation. As with other '-omics', quantification is an important part of morphomics and, because biological systems exist and operate in 3D space, precise descriptions of form, content and spatial relationships require the quantification of structure in 3D. Revealing and quantifying structural detail inside the specimen is achieved currently in two main ways: (i) by some form of reconstruction from serial physical or tomographic slices or (ii) by using randomly-sampled sections and simple test probes (points, lines, areas, volumes) to derive stereological estimates of global and/or individual quantities. The latter include volumes, surfaces, lengths and numbers of interesting features and spatial relationships between them. This article emphasises the value of stereological design, sampling principles and estimation tools as a template for combining with alternative imaging techniques to tackle the 'big data' issue and advance knowledge and understanding of the morphome. The combination of stereology, TEM and immunogold cytochemistry provides a practical illustration of how this has been achieved in the sub-field of nanomorphomics. Applying these quantitative tools/techniques in a carefully managed study design offers us a deeper appreciation of the spatiotemporal relationships between the genome, metabolome and morphome which are integral to systems biology.


Assuntos
Anatomia/métodos , Imageamento Tridimensional , Biologia de Sistemas/métodos , Técnicas Estereotáxicas , Terminologia como Assunto
10.
Trends Cell Biol ; 25(2): 59-64, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25455351

RESUMO

Systems-based understanding of living organisms depends on acquiring huge datasets from arrays of genes, transcripts, proteins, and lipids. These data, referred to as 'omes', are assembled using 'omics' methodologies. Currently a comprehensive, quantitative view of cellular and organellar systems in 3D space at nanoscale/molecular resolution is missing. We introduce here the term 'morphome' for the distribution of living matter within a 3D biological system, and 'morphomics' for methods of collecting 3D data systematically and quantitatively. A sampling-based approach termed stereology currently provides rapid, precise, and minimally biased morphomics. We propose that stereology solves the 'big data' problem posed by emerging wide-scale electron microscopy (EM) and can establish quantitative links between the newer nanoimaging platforms such as electron tomography, cryo-EM, and correlative microscopy.


Assuntos
Imageamento Tridimensional , Biologia de Sistemas/métodos , Microscopia Crioeletrônica , Tomografia com Microscopia Eletrônica , Microscopia Eletrônica , Microscopia de Polarização , Biologia de Sistemas/tendências
11.
PLoS Pathog ; 10(12): e1004547, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25474405

RESUMO

Microsporidia are obligate intracellular parasites of most animal groups including humans, but despite their significant economic and medical importance there are major gaps in our understanding of how they exploit infected host cells. We have investigated the evolution, cellular locations and substrate specificities of a family of nucleotide transport (NTT) proteins from Trachipleistophora hominis, a microsporidian isolated from an HIV/AIDS patient. Transport proteins are critical to microsporidian success because they compensate for the dramatic loss of metabolic pathways that is a hallmark of the group. Our data demonstrate that the use of plasma membrane-located nucleotide transport proteins (NTT) is a key strategy adopted by microsporidians to exploit host cells. Acquisition of an ancestral transporter gene at the base of the microsporidian radiation was followed by lineage-specific events of gene duplication, which in the case of T. hominis has generated four paralogous NTT transporters. All four T. hominis NTT proteins are located predominantly to the plasma membrane of replicating intracellular cells where they can mediate transport at the host-parasite interface. In contrast to published data for Encephalitozoon cuniculi, we found no evidence for the location for any of the T. hominis NTT transporters to its minimal mitochondria (mitosomes), consistent with lineage-specific differences in transporter and mitosome evolution. All of the T. hominis NTTs transported radiolabelled purine nucleotides (ATP, ADP, GTP and GDP) when expressed in Escherichia coli, but did not transport radiolabelled pyrimidine nucleotides. Genome analysis suggests that imported purine nucleotides could be used by T. hominis to make all of the critical purine-based building-blocks for DNA and RNA biosynthesis during parasite intracellular replication, as well as providing essential energy for parasite cellular metabolism and protein synthesis.


Assuntos
Proteínas de Transporte/metabolismo , Proteínas Fúngicas/metabolismo , Microsporídios/metabolismo , Nucleotídeos de Purina/metabolismo , Síndrome da Imunodeficiência Adquirida/microbiologia , Transporte Biológico Ativo/fisiologia , Proteínas de Transporte/genética , DNA Fúngico/biossíntese , DNA Fúngico/genética , Proteínas Fúngicas/genética , Humanos , Microsporídios/genética , Microsporídios/isolamento & purificação , RNA Fúngico/biossíntese , RNA Fúngico/genética
12.
Mol Biosyst ; 10(1): 34-44, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24170094

RESUMO

The fluorescence response of the Thioflavin-T (ThT) dye and derivatives has become the standard tool for detecting ß-amyloid aggregates (Aß) in solution. However, it is accepted that ThT-based methods suffer from important drawbacks. Some of these are due to the cationic structure of ThT, which limits its application at slightly acidic conditions; whereas some limitations are related to the general use of an extrinsic-dye sensing strategy and its intrinsic requirement for the formation of a sensor-binding site during the aggregation process. Here, we introduce fluorescence-self-quenching (FSQ) between N-terminally tagged peptides as a strategy to overcome some of these limitations. Using a combination of steady-state, picosecond time-resolved fluorescence and transmission electron microscopy, we characterize the fluorescence response of HiLyte fluor 555-labelled Aß peptides and demonstrate that Aß self-assembly organizes the covalently attached probes in close proximity to trigger the self-quenching sensing process over a broad range of conditions. Importantly, we prove that N-terminal tagging of ß-amyloid peptides does not alter the self-assembly kinetics or the resulting aggregated structures. We also tested the ability of FSQ-based methods to monitor the inhibition of Aß1-42 aggregation using the small heat-shock protein Hsp20 as a model system. Overall, FSQ-based strategies for amyloid-sensing fill the gap between current morphology-specific protocols using extrinsic dyes, and highly-specialized single-molecule techniques that are difficult to implement in high-throughput analytical determinations. When performed in Förster resonance energy transfer (FRET) format, the method becomes a ratiometric platform to gain insights into amyloid structure and for standardizing in vitro studies of amyloid aggregation.


Assuntos
Peptídeos beta-Amiloides/isolamento & purificação , Corantes Fluorescentes/química , Fragmentos de Peptídeos/isolamento & purificação , Peptídeos beta-Amiloides/química , Benzotiazóis , Sítios de Ligação , Fluorescência , Humanos , Cinética , Fragmentos de Peptídeos/química , Ligação Proteica , Tiazóis/química
13.
Methods Mol Biol ; 1117: 315-23, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24357369

RESUMO

Immunoelectron microscopy (immuno-EM) using gold labeling on sections is a powerful technique for mapping the distribution of proteins, lipids, carbohydrates, and nucleic acids in intact biological systems. The gold particles comprise a useful and readily quantifiable digital readout. Simply applying a labeling reagent (antibody or other affinity probe) to an ultrathin section yields a pattern of gold signal over the biological structures displayed in the section. This initial (raw) distribution of gold signal contains both specific and nonspecific labeling. Here we describe a method for removing nonspecific labeling to leave the target-specific signal. This specific labeling distribution better reflects the "real" distribution of the cell component of interest.


Assuntos
Microscopia Imunoeletrônica/métodos , Animais , Microtomia/métodos , Sensibilidade e Especificidade , Coloração e Rotulagem/métodos
14.
PLoS Pathog ; 8(10): e1002979, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23133373

RESUMO

The dynamics of reductive genome evolution for eukaryotes living inside other eukaryotic cells are poorly understood compared to well-studied model systems involving obligate intracellular bacteria. Here we present 8.5 Mb of sequence from the genome of the microsporidian Trachipleistophora hominis, isolated from an HIV/AIDS patient, which is an outgroup to the smaller compacted-genome species that primarily inform ideas of evolutionary mode for these enormously successful obligate intracellular parasites. Our data provide detailed information on the gene content, genome architecture and intergenic regions of a larger microsporidian genome, while comparative analyses allowed us to infer genomic features and metabolism of the common ancestor of the species investigated. Gene length reduction and massive loss of metabolic capacity in the common ancestor was accompanied by the evolution of novel microsporidian-specific protein families, whose conservation among microsporidians, against a background of reductive evolution, suggests they may have important functions in their parasitic lifestyle. The ancestor had already lost many metabolic pathways but retained glycolysis and the pentose phosphate pathway to provide cytosolic ATP and reduced coenzymes, and it had a minimal mitochondrion (mitosome) making Fe-S clusters but not ATP. It possessed bacterial-like nucleotide transport proteins as a key innovation for stealing host-generated ATP, the machinery for RNAi, key elements of the early secretory pathway, canonical eukaryotic as well as microsporidian-specific regulatory elements, a diversity of repetitive and transposable elements, and relatively low average gene density. Microsporidian genome evolution thus appears to have proceeded in at least two major steps: an ancestral remodelling of the proteome upon transition to intracellular parasitism that involved reduction but also selective expansion, followed by a secondary compaction of genome architecture in some, but not all, lineages.


Assuntos
Metabolismo Energético/genética , Genoma Fúngico , Microsporídios/genética , Proteoma/genética , Síndrome da Imunodeficiência Adquirida/microbiologia , Evolução Biológica , Evolução Molecular , Humanos , Microsporídios/isolamento & purificação , Mitocôndrias , Filogenia , Proteômica , Interferência de RNA , RNA Interferente Pequeno , Análise de Sequência de DNA
15.
Histochem Cell Biol ; 135(3): 317-26, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21327857

RESUMO

Various methods for quantifying cellular immunogold labelling on transmission electron microscope thin sections are currently available. All rely on sound random sampling principles and are applicable to single immunolabelling across compartments within a given cell type or between different experimental groups of cells. Although methods are also available to test for colocalization in double/triple immunogold labelling studies, so far, these have relied on making multiple measurements of gold particle densities in defined areas or of inter-particle nearest neighbour distances. Here, we present alternative two-step approaches to codistribution and colocalization assessment that merely require raw counts of gold particles in distinct cellular compartments. For assessing codistribution over aggregate compartments, initial statistical evaluation involves combining contingency table and chi-squared analyses to provide predicted gold particle distributions. The observed and predicted distributions allow testing of the appropriate null hypothesis, namely, that there is no difference in the distribution patterns of proteins labelled by different sizes of gold particle. In short, the null hypothesis is that of colocalization. The approach for assessing colabelling recognises that, on thin sections, a compartment is made up of a set of sectional images (profiles) of cognate structures. The approach involves identifying two groups of compartmental profiles that are unlabelled and labelled for one gold marker size. The proportions in each group that are also labelled for the second gold marker size are then compared. Statistical analysis now uses a 2 × 2 contingency table combined with the Fisher exact probability test. Having identified double labelling, the profiles can be analysed further in order to identify characteristic features that might account for the double labelling. In each case, the approach is illustrated using synthetic and/or experimental datasets and can be refined to correct observed labelling patterns to specific labelling patterns. These simple and efficient approaches should be of more immediate utility to those interested in codistribution and colocalization in multiple immunogold labelling investigations.


Assuntos
Células/citologia , Células/metabolismo , Ouro/análise , Ouro/química , Coloides , Células HeLa , Humanos , Imuno-Histoquímica , Microscopia Imunoeletrônica , Coloração e Rotulagem
16.
Biochem J ; 418(2): 293-310, 2009 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-18990090

RESUMO

In rat liver RL-34 cells, endogenous Nrf1 (nuclear factor-erythroid 2 p45 subunit-related factor 1) is localized in the ER (endoplasmic reticulum) where it exists as a glycosylated protein. Electron microscopy has demonstrated that ectopic Nrf1 in COS-1 cells is located in the ER and the NE (nuclear envelope). Subcellular fractionation, together with a membrane proteinase protection assay, revealed that Nrf1 is an integral membrane protein with both luminal and cytoplasmic domains. The N-terminal 65 residues of Nrf1 direct its integration into the ER and NE membranes and tether it to a Triton X-100-resistant membrane microdomain that is associated with lipid rafts. The activity of Nrf1 was increased by the electrophile tBHQ (t-butyl hydroquinone) probably through an N-terminal domain-dependent process. We found that the NST (Asn/Ser/Thr-rich) domain, along with AD1 (acidic domain 1), contributes positively to the transactivation activity of full-length Nrf1. Furthermore, the NST domain contains seven putative -Asn-Xaa-Ser/Thr- glycosylation sites and, when glycosylation was prevented by replacing all of the seven asparagine residues with either glutamine (Nrf1(1-7xN/Q)) or aspartic acid (Nrf1(1-7xN/D)), the former multiple point mutant possessed less activity than the wild-type factor, whereas the latter mutant exhibited substantially greater activity. Lastly, the ER stressors tunicamycin, thapsigargin and Brefeldin A were found to inhibit basal Nrf1 activity by approximately 25%, and almost completely prevented induction of Nrf1-mediated transactivation by tBHQ. Collectively, these results suggest that the activity of Nrf1 critically depends on its topology within the ER, and that this is modulated by redox stressors, as well as by its glycosylation status.


Assuntos
Retículo Endoplasmático/efeitos dos fármacos , Hidroquinonas/farmacologia , Fator 1 Relacionado a NF-E2/fisiologia , Membrana Nuclear/metabolismo , Estresse Fisiológico/fisiologia , Ativação Transcricional/efeitos dos fármacos , Animais , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Fatores de Transcrição de Zíper de Leucina Básica/fisiologia , Brefeldina A/farmacologia , Células COS , Células Cultivadas , Chlorocebus aethiops , Retículo Endoplasmático/metabolismo , Glicosilação , Fator 1 Relacionado a NF-E2/metabolismo , Oxirredução/efeitos dos fármacos , Inibidores da Síntese de Proteínas/farmacologia , Ratos , Estresse Fisiológico/efeitos dos fármacos , Tapsigargina/farmacologia , Fatores de Transcrição/metabolismo , Fatores de Transcrição/fisiologia , Tunicamicina/farmacologia
17.
Histochem Cell Biol ; 130(2): 299-313, 2008 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-18553098

RESUMO

Quantitative immunoelectron microscopy uses ultrathin sections and gold particle labelling to determine distributions of molecules across cell compartments. Here, we review a portfolio of new methods for comparing labelling distributions between different compartments in one study group (method 1) and between the same compartments in two or more groups (method 2). Specimen samples are selected unbiasedly and then observed and expected distributions of gold particles are estimated and compared by appropriate statistical procedures. The methods can be used to analyse gold label distributed between volume-occupying (organelle) and surface-occupying (membrane) compartments, but in method 1, membranes must be treated as organelles. With method 1, gold counts are combined with stereological estimators of compartment size to determine labelling density (LD). For volume-occupiers, LD can be expressed simply as golds per test point and, for surface-occupiers, as golds per test line intersection. Expected distributions are generated by randomly assigning gold particles to compartments and expressing observed/expected counts as a relative labelling index (RLI). Preferentially-labelled compartments are identified from their RLI values and by Chi-squared analysis of observed and expected distributions. For method 2, the raw gold particle counts distributed between compartments are simply compared across groups by contingency table and Chi-squared analysis. This identifies the main compartments responsible for the differences between group distributions. Finally, we discuss labelling efficiency (the number of gold particles per target molecule) and describe how it can be estimated for volume- or surface-occupiers by combining stereological data with biochemical determinations.


Assuntos
Coloide de Ouro/química , Microscopia Imunoeletrônica/métodos , Microtomia/métodos , Animais , Células Dendríticas/ultraestrutura , Humanos , Imuno-Histoquímica , Coloração e Rotulagem
18.
Nature ; 453(7194): 553-6, 2008 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-18449191

RESUMO

Mitochondria use transport proteins of the eukaryotic mitochondrial carrier family (MCF) to mediate the exchange of diverse substrates, including ATP, with the host cell cytosol. According to classical endosymbiosis theory, insertion of a host-nuclear-encoded MCF transporter into the protomitochondrion was the key step that allowed the host cell to harvest ATP from the enslaved endosymbiont. Notably the genome of the microsporidian Encephalitozoon cuniculi has lost all of its genes for MCF proteins. This raises the question of how the recently discovered microsporidian remnant mitochondrion, called a mitosome, acquires ATP to support protein import and other predicted ATP-dependent activities. The E. cuniculi genome does contain four genes for an unrelated type of nucleotide transporter used by plastids and bacterial intracellular parasites, such as Rickettsia and Chlamydia, to import ATP from the cytosol of their eukaryotic host cells. The inference is that E. cuniculi also uses these proteins to steal ATP from its eukaryotic host to sustain its lifestyle as an obligate intracellular parasite. Here we show that, consistent with this hypothesis, all four E. cuniculi transporters can transport ATP, and three of them are expressed on the surface of the parasite when it is living inside host cells. The fourth transporter co-locates with mitochondrial Hsp70 to the E. cuniculi mitosome. Thus, uniquely among eukaryotes, the traditional relationship between mitochondrion and host has been subverted in E. cuniculi, by reductive evolution and analogous gene replacement. Instead of the mitosome providing the parasite cytosol with ATP, the parasite cytosol now seems to provide ATP for the organelle.


Assuntos
Trifosfato de Adenosina/metabolismo , Encephalitozoon cuniculi/citologia , Encephalitozoon cuniculi/metabolismo , Mitocôndrias/metabolismo , Animais , Transporte Biológico , Proteínas de Transporte/genética , Proteínas de Transporte/imunologia , Proteínas de Transporte/metabolismo , Linhagem Celular , Encephalitozoon cuniculi/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/imunologia , Proteínas Fúngicas/metabolismo , Genoma Fúngico/genética , Genoma Mitocondrial/genética , Mitocôndrias/genética , Modelos Biológicos , Dados de Sequência Molecular , Coelhos , Ratos , Simbiose
19.
Mol Cell Biol ; 28(10): 3258-72, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-18347057

RESUMO

PDK1 activates a group of kinases, including protein kinase B (PKB)/Akt, p70 ribosomal S6 kinase (S6K), and serum and glucocorticoid-induced protein kinase (SGK), that mediate many of the effects of insulin as well as other agonists. PDK1 interacts with phosphoinositides through a pleckstrin homology (PH) domain. To study the role of this interaction, we generated knock-in mice expressing a mutant of PDK1 incapable of binding phosphoinositides. The knock-in mice are significantly small, insulin resistant, and hyperinsulinemic. Activation of PKB is markedly reduced in knock-in mice as a result of lower phosphorylation of PKB at Thr308, the residue phosphorylated by PDK1. This results in the inhibition of the downstream mTOR complex 1 and S6K1 signaling pathways. In contrast, activation of SGK1 or p90 ribosomal S6 kinase or stimulation of S6K1 induced by feeding is unaffected by the PDK1 PH domain mutation. These observations establish the importance of the PDK1-phosphoinositide interaction in enabling PKB to be efficiently activated with an animal model. Our findings reveal how reduced activation of PKB isoforms impinges on downstream signaling pathways, causing diminution of size as well as insulin resistance.


Assuntos
Tamanho Corporal/genética , Resistência à Insulina/genética , Mutação , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Substituição de Aminoácidos , Animais , Tamanho Corporal/fisiologia , Feminino , Resistência à Insulina/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Mutantes , Modelos Moleculares , Mutagênese Sítio-Dirigida , Fenótipo , Estado Pré-Diabético/genética , Estado Pré-Diabético/metabolismo , Proteínas Serina-Treonina Quinases/química , Estrutura Terciária de Proteína , Piruvato Desidrogenase Quinase de Transferência de Acetil
20.
Histochem Cell Biol ; 129(3): 367-78, 2008 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-18180944

RESUMO

In quantitative immunoelectron microscopy, subcellular compartments that are preferentially labelled with colloidal gold particles can be identified by estimating labelling densities (LDs) and relative labelling indices (RLIs). Hitherto, this approach has been limited to compartments which are either surface occupying (membranes) or volume occupying (organelles) but not a mixture of both (membranes and organelles). However, some antigens are known to translocate between membrane and organelle compartments and the problem then arises of expressing gold particle LDs in a consistent manner (e.g., as number per compartment profile area). Here, we present one possible solution to tackle this problem. With this method, each membrane is treated as a volume-occupying compartment and this is achieved by creating an acceptance zone at a fixed distance on each side of membrane images. Gold signal intensity is then expressed as an LD within the membrane profile area so created and this LD can be compared to LDs found in volume-occupying compartments. Acceptance zone width is determined largely by the expected dispersion of gold labelling. In some cases, the zone can be applied to all visible membrane images but there is a potential problem when image loss occurs due to the fact that membranes are not cut orthogonal to their surface but are tilted within the section. The solution presented here is to select a subset of clear images representing orthogonally sectioned membranes (so-called local vertical windows, LVWs). The fraction of membrane images forming LVWs can be estimated in two ways: goniometrically (by determining the angle at which images become unclear) or stereologically (by counting intersections with test lines). The fraction obtained by either method can then be used to calculate a factor correcting for membrane image loss. In turn, this factor is used to estimate the total gold labelling associated with the acceptance zone of the entire (volume-occupying) membrane. However calculated, the LDs over the chosen (membrane and organelle) compartments are used to obtain observed and expected gold particle counts. The observed distribution is determined simply by counting gold particles associated with each compartment. Next, an expected distribution is created by randomly superimposing test points and counting those hitting each compartment. LDs of the chosen compartments are used to calculate RLI and chi-squared values and these serve to identify those compartments in which there is preferential labelling. The methods are illustrated by synthetic and real data.


Assuntos
Coloide de Ouro/análise , Membranas Intracelulares/química , Organelas/química , Compartimento Celular , Linhagem Celular , Distribuição de Qui-Quadrado , Humanos , Imuno-Histoquímica , Membranas Intracelulares/ultraestrutura , Microscopia Imunoeletrônica , Organelas/ultraestrutura , Tamanho da Partícula , Coloração e Rotulagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...