Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Alzheimers Dis ; 91(4): 1291-1301, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36617779

RESUMO

BACKGROUND: Transactive Response DNA Binding Protein 43 kDa (TDP-43) pathology is frequently found in cases with Alzheimer's disease (AD). TDP-43 pathology is associated with hippocampal atrophy and greater AD severity denoted by cognition and clinical representation. Current TDP-43 pathology studies are predominantly based on non-Hispanic White cohorts. OBJECTIVE: We sought to evaluate the presence of TDP-43 pathology across ethnoracial groups utilizing the National Alzheimer's Coordinating Center; a database containing data from over 29 institutions across the United States. Cases (N = 1135: Hispanics/Latinos = 29, African Americans/Black Americans = 51, Asians/Asian Americans = 10, American Indians/Alaskan Natives = 2, non-Hispanic White = 1043) with intermediate/high AD having data on TDP-43 pathology in the amygdala, hippocampus, entorhinal cortex, and neocortex were included. METHODS: TDP-43 pathology frequency in each neuroanatomic region among ethnoracial groups were compared using generalized linear mixed effects models with center as a random effect adjusting for age at death, education, and gender. RESULTS: Although groups were imbalanced, there was no significant difference across ethnoracial groups based on TDP-43 pathology (p = 0.84). With respect to neuroanatomical regions evaluated, there were no significant differences across ethnoracial groups (p-values > 0.06). There were also no significant differences for age at death and gender ratios across ethnoracial groups based on TDP-43 pathology. Although not statistically significant, TDP-43 pathology was present less often in Hispanic/Latinos (34%) when compared to non-Hispanic Whites (46%). CONCLUSION: While this is a preliminary evaluation, it highlights the need for diverse cohorts and on TDP-43 pathology research across ethnoracial groups. This is the first study to our knowledge having a focus on the neuroanatomical distribution of TDP-43 deposits in Hispanic/Latino decedents with AD.


Assuntos
Doença de Alzheimer , Proteínas de Ligação a DNA , Humanos , Doença de Alzheimer/patologia , População Negra , Proteínas de Ligação a DNA/metabolismo , Escolaridade , Hispânico ou Latino
2.
Biopreserv Biobank ; 21(3): 282-287, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35856794

RESUMO

In 1984, the National Institute on Aging developed the Alzheimer's disease centers program. The main goal of these centers is to advance the understanding of Alzheimer's disease and related dementias (ADRD) through comprehensive patient evaluations and cutting-edge research in pathology, laboratory medicine, education, and scientific discovery. The neuropathology core of the Alzheimer's Disease Research Centers (ADRCs) collects postmortem brain tissue from consented donors ranging from cognitively normal individuals to those with late-stage dementia, whose samples and data can be shared around the world to further advance knowledge, diagnosis, and to eventually find cures for ADRD. Although recommended guidelines for biorepositories exist, we aimed to understand the current practices within neuropathology cores across the ADRCs. A survey was developed that focused on information related to sample processing methods, biospecimen requests, financial costs related to the repository, and data management. This survey was distributed to 28 current and former ADRC neuropathology cores. The survey obtained a response rate of 82% (23/28). Although most centers were consistent in responses related to sample processing and storage, they varied widely in processes by which neuropathological samples are shared and cost recovery mechanisms. The results of this survey provide benchmark data on practices within neuropathology cores across ADRCs and the overlap with biorepository best practices. Future studies focused on understanding factors that may influence current practices (such as available funds and personnel) are need to aid in minimizing barriers to optimally follow best practices. Sharing these data among ADRCs will allow for improvement in workflows and working toward cures for ADRD.


Assuntos
Doença de Alzheimer , Humanos , Doença de Alzheimer/diagnóstico , Doença de Alzheimer/patologia , Encéfalo , Autopsia
3.
Comp Med ; 72(4): 267-272, 2022 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-35882509

RESUMO

Age-associated neurodegenerative changes, including amyloid ß (Aß) plaques, neurofibrillary tangles (NFTs), and amyloid angiopathy comparable to those seen in the brains of human patients with Alzheimer's disease (AD), have been reported in the brains of aged bears. However, the significance of these findings in bears is unclear due to the difficulty in assessing cognitive impairment and the lack of standardized approaches for the semiquantitative evaluation of Aß plaques and NFTs. In this study, we evaluate the neuropathologic changes in archival brain tissue of 2 aged polar bears (Ursus maritimus, ages 28 and 37) using the National Institute of Aging-Alzheimer Association (NIA-AA) consensus guidelines for the neuropathologic assessment of Alzheimer's Disease (AD). Both bears had an Aß (A) score of 3 of 3, Braak stage (B score) of 2 of 3, and neuritic plaque (C) score of 3 of 3. These findings are consistent with the neurodegenerative changes observed in brains of patients with AD. The application of NIA-AA consensus guidelines, as applied to the neuropathologic assessment of the aged bears in this report, demonstrates the use of standardized semiquantitative assessment systems for comparative, translational studies of aging in a vulnerable wildlife species.


Assuntos
Doença de Alzheimer , Ursidae , Adulto , Idoso , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/metabolismo , Animais , Encéfalo/patologia , Humanos , Emaranhados Neurofibrilares/metabolismo , Emaranhados Neurofibrilares/patologia , Placa Amiloide/patologia , Placa Amiloide/veterinária , Ursidae/metabolismo
4.
J Nucl Med ; 63(10): 1570-1578, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35177426

RESUMO

Parkinson's disease (PD) is associated with aberrant innate immune responses, including microglial activation and infiltration of peripheral myeloid cells into the central nervous system (CNS). Methods to investigate innate immune activation in PD are limited and have not yet elucidated key interactions between neuroinflammation and peripheral inflammation. Translocator protein 18 kDa (TSPO) PET is a widely evaluated imaging approach for studying activated microglia and peripheral myeloid lineage cells in vivo but has yet to be fully explored in PD. Here, we investigate the utility of TSPO PET in addition to PET imaging of triggering receptor expressed on myeloid cells 1 (TREM1)-a novel biomarker of proinflammatory innate immune cells-for detecting innate immune responses in the 6-hydroxydopamine mouse model of dopaminergic neuron degeneration. Methods: C57/BL6J and TREM1 knockout mice were stereotactically injected with 6-hydroxydopamine in the left striatum; control mice were injected with saline. At day 7 or 14 after surgery, mice were administered 18F-GE-180, 64Cu-TREM1 monoclonal antibody (mAb), or 64Cu-isotype control mAb and imaged by PET/CT. Ex vivo autoradiography was performed to obtain high-resolution images of tracer binding within the brain. Immunohistochemistry was conducted to verify myeloid cell activation and dopaminergic cell death, and quantitative polymerase chain reaction and flow cytometry were completed to assess levels of target in the brain. Results: PET/CT images of both tracers showed elevated signal within the striatum of 6-hydroxydopamine-injected mice compared with those injected with saline. Autoradiography afforded higher-resolution brain images and revealed significant TSPO and TREM1 tracer binding within the ipsilateral striatum of 6-hydroxydopamine mice compared with saline mice at both 7 and 14 d after toxin. Interestingly, 18F-GE-180 enabled detection of inflammation in the brain and peripheral tissues (blood and spleen) of 6-hydroxydopamine mice, whereas 64Cu-TREM1 mAb appeared to be more sensitive and specific for detecting neuroinflammation, in particular infiltrating myeloid cells, in these mice, as demonstrated by flow cytometry findings and higher tracer binding signal-to-background ratios in brain. Conclusion: TSPO and TREM1 PET tracers are promising tools for investigating different cell types involved in innate immune activation in the context of dopaminergic neurodegeneration, thus warranting further investigation in other PD rodent models and human postmortem tissue to assess their clinical potential.


Assuntos
Doença de Parkinson , Animais , Anticorpos Monoclonais , Modelos Animais de Doenças , Imunidade Inata , Inflamação , Camundongos , Camundongos Knockout , Oxidopamina , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Tomografia por Emissão de Pósitrons/métodos , Receptores de GABA/metabolismo , Receptor Gatilho 1 Expresso em Células Mieloides
5.
Annu Rev Pathol ; 16: 351-376, 2021 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-33497263

RESUMO

Alzheimer's disease (AD) is a pervasive, relentlessly progressive neurodegenerative disorder that includes both hereditary and sporadic forms linked by common underlying neuropathologic changes and neuropsychological manifestations. While a clinical diagnosis is often made on the basis of initial memory dysfunction that progresses to involve multiple cognitive domains, definitive diagnosis requires autopsy examination of the brain to identify amyloid plaques and neurofibrillary degeneration. Over the past 100 years, there has been remarkable progress in our understanding of the underlying pathophysiologic processes, pathologic changes, and clinical phenotypes of AD, largely because genetic pathways that include but expand beyond amyloid processing have been uncovered. This review discusses the current state of understanding of the genetics of AD with a focus on how these advances are both shaping our understanding of the disease and informing novel avenues and approaches for development of potential therapeutic targets.


Assuntos
Doença de Alzheimer/genética , Doença de Alzheimer/fisiopatologia , Envelhecimento/genética , Envelhecimento/patologia , Animais , Humanos , Degeneração Neural/genética , Degeneração Neural/fisiopatologia
6.
J Neuroinflammation ; 17(1): 275, 2020 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-32948198

RESUMO

BACKGROUND: B cells play a central role in multiple sclerosis (MS) through production of injurious antibodies, secretion of pro-inflammatory cytokines, and antigen presentation. The therapeutic success of monoclonal antibodies (mAbs) targeting B cells in some but not all individuals suffering from MS highlights the need for a method to stratify patients and monitor response to treatments in real-time. Herein, we describe the development of the first CD19 positron emission tomography (PET) tracer, and its evaluation in a rodent model of MS, experimental autoimmune encephalomyelitis (EAE). METHODS: Female C57BL/6 J mice were induced with EAE through immunization with myelin oligodendrocyte glycoprotein (MOG1-125). PET imaging of naïve and EAE mice was performed 19 h after administration of [64Cu]CD19-mAb. Thereafter, radioactivity in organs of interest was determined by gamma counting, followed by ex vivo autoradiography of central nervous system (CNS) tissues. Anti-CD45R (B220) immunostaining of brain tissue from EAE and naïve mice was also conducted. RESULTS: Radiolabelling of DOTA-conjugated CD19-mAb with 64Cu was achieved with a radiochemical purity of 99% and molar activity of 2 GBq/µmol. Quantitation of CD19 PET images revealed significantly higher tracer binding in whole brain of EAE compared to naïve mice (2.02 ± 0.092 vs. 1.68 ± 0.06 percentage of injected dose per gram, % ID/g, p = 0.0173). PET findings were confirmed by ex vivo gamma counting of perfused brain tissue (0.22 ± 0.020 vs. 0.12 ± 0.003 % ID/g, p = 0.0010). Moreover, ex vivo autoradiography of brain sections corresponded with PET imaging results and the spatial distribution of B cells observed in B220 immunohistochemistry-providing further evidence that [64Cu]CD19-mAb enables visualization of B cell infiltration into the CNS of EAE mice. CONCLUSION: CD19-PET imaging can be used to detect elevated levels of B cells in the CNS of EAE mice, and has the potential to impact the way we study, monitor, and treat clinical MS.


Assuntos
Antígenos CD19/metabolismo , Linfócitos B/metabolismo , Encefalomielite Autoimune Experimental/metabolismo , Esclerose Múltipla/metabolismo , Tomografia por Emissão de Pósitrons/métodos , Traçadores Radioativos , Animais , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Modelos Animais de Doenças , Encefalomielite Autoimune Experimental/diagnóstico por imagem , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Esclerose Múltipla/diagnóstico por imagem , Medula Espinal/diagnóstico por imagem , Medula Espinal/metabolismo
8.
Nat Commun ; 11(1): 3327, 2020 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-32620863

RESUMO

Gaucher disease is a lysosomal storage disorder caused by insufficient glucocerebrosidase activity. Its hallmark manifestations are attributed to infiltration and inflammation by macrophages. Current therapies for Gaucher disease include life-long intravenous administration of recombinant glucocerebrosidase and orally-available glucosylceramide synthase inhibitors. An alternative approach is to engineer the patient's own hematopoietic system to restore glucocerebrosidase expression, thereby replacing the affected cells, and constituting a potential one-time therapy for this disease. Here, we report an efficient CRISPR/Cas9-based approach that targets glucocerebrosidase expression cassettes with a monocyte/macrophage-specific element to the CCR5 safe-harbor locus in human hematopoietic stem and progenitor cells. The targeted cells generate glucocerebrosidase-expressing macrophages and maintain long-term repopulation and multi-lineage differentiation potential with serial transplantation. The combination of a safe-harbor and a lineage-specific promoter establishes a universal correction strategy and circumvents potential toxicity of ectopic glucocerebrosidase in the stem cells. Furthermore, it constitutes an adaptable platform for other lysosomal enzyme deficiencies.


Assuntos
Edição de Genes/métodos , Glucosilceramidase/metabolismo , Transplante de Células-Tronco Hematopoéticas/métodos , Células-Tronco Hematopoéticas/enzimologia , Macrófagos/enzimologia , Monócitos/enzimologia , Animais , Diferenciação Celular/genética , Células Cultivadas , Doença de Gaucher/genética , Doença de Gaucher/terapia , Glucosilceramidase/genética , Células HEK293 , Hematopoese/genética , Células-Tronco Hematopoéticas/metabolismo , Humanos , Macrófagos/metabolismo , Engenharia Metabólica , Camundongos Endogâmicos NOD , Camundongos Knockout , Camundongos SCID , Monócitos/metabolismo , Transplante Autólogo
9.
PLoS Genet ; 14(12): e1007850, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30521570

RESUMO

Domestic dog breeds exhibit remarkable morphological variations that result from centuries of artificial selection and breeding. Identifying the genetic changes that contribute to these variations could provide critical insights into the molecular basis of tissue and organismal morphogenesis. Bulldogs, French Bulldogs and Boston Terriers share many morphological and disease-predisposition traits, including brachycephalic skull morphology, widely set eyes and short stature. Unlike other brachycephalic dogs, these breeds also exhibit vertebral malformations that result in a truncated, kinked tail (screw tail). Whole genome sequencing of 100 dogs from 21 breeds identified 12.4 million bi-allelic variants that met inclusion criteria. Whole Genome Association of these variants with the breed defining phenotype of screw tail was performed using 10 cases and 84 controls and identified a frameshift mutation in the WNT pathway gene DISHEVELLED 2 (DVL2) (Chr5: 32195043_32195044del, p = 4.37 X 10-37) as the most strongly associated variant in the canine genome. This DVL2 variant was fixed in Bulldogs and French Bulldogs and had a high allele frequency (0.94) in Boston Terriers. The DVL2 variant segregated with thoracic and caudal vertebral column malformations in a recessive manner with incomplete and variable penetrance for thoracic vertebral malformations between different breeds. Importantly, analogous frameshift mutations in the human DVL1 and DVL3 genes cause Robinow syndrome, a congenital disorder characterized by similar craniofacial, limb and vertebral malformations. Analysis of the canine DVL2 variant protein showed that its ability to undergo WNT-induced phosphorylation is reduced, suggesting that altered WNT signaling may contribute to the Robinow-like syndrome in the screwtail breeds.


Assuntos
Anormalidades Craniofaciais/veterinária , Proteínas Desgrenhadas/genética , Doenças do Cão/genética , Cães/genética , Nanismo/veterinária , Deformidades Congênitas dos Membros/veterinária , Anormalidades Urogenitais/veterinária , Sequência de Aminoácidos , Animais , Anormalidades Craniofaciais/genética , Anormalidades Craniofaciais/metabolismo , Proteínas Desgrenhadas/metabolismo , Doenças do Cão/metabolismo , Cães/anatomia & histologia , Cães/classificação , Nanismo/genética , Nanismo/metabolismo , Feminino , Mutação da Fase de Leitura , Variação Genética , Estudo de Associação Genômica Ampla , Humanos , Deformidades Congênitas dos Membros/genética , Deformidades Congênitas dos Membros/metabolismo , Masculino , Compostos de Organossilício , Homologia de Sequência de Aminoácidos , Especificidade da Espécie , Cauda/anatomia & histologia , Anormalidades Urogenitais/genética , Anormalidades Urogenitais/metabolismo , Via de Sinalização Wnt/genética
10.
G3 (Bethesda) ; 8(8): 2773-2780, 2018 07 31.
Artigo em Inglês | MEDLINE | ID: mdl-29945969

RESUMO

Canine neuroaxonal dystrophy (NAD) is a recessive, degenerative neurological disease of young adult Rottweiler dogs (Canis lupus familiaris) characterized pathologically by axonal spheroids primarily targeting sensory axon terminals. A genome-wide association study of seven Rottweilers affected with NAD and 42 controls revealed a significantly associated region on canine chromosome 5 (CFA 5). Homozygosity within the associated region narrowed the critical interval to a 4.46 Mb haplotype (CFA5:11.28 Mb - 15.75 Mb; CanFam3.1) that associated with the phenotype. Whole-genome sequencing of two histopathologically confirmed canine NAD cases and 98 dogs unaffected with NAD revealed a homozygous missense mutation within the Vacuolar Protein Sorting 11 (VPS11) gene (g.14777774T > C; p.H835R) that was associated with the phenotype. These findings present the opportunity for an antemortem test for confirming NAD in Rottweilers where the allele frequency was estimated at 2.3%. VPS11 mutations have been associated with a degenerative leukoencephalopathy in humans, and VSP11 should additionally be included as a candidate gene for unexplained cases of human NAD.


Assuntos
Doenças do Cão/genética , Mutação de Sentido Incorreto , Distrofias Neuroaxonais/genética , Proteínas de Transporte Vesicular/genética , Animais , Cromossomos/genética , Doenças do Cão/patologia , Cães , Haplótipos , Distrofias Neuroaxonais/patologia , Distrofias Neuroaxonais/veterinária
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA