Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
1.
Ann Biomed Eng ; 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38816561

RESUMO

Older adults have difficulty maintaining balance when faced with postural disturbances, a task that is influenced by the stiffness of the triceps surae and Achilles tendon. Age-related changes in Achilles tendon stiffness have been reported at matched levels of effort, but measures typically have not been made at matched loads, which is important due to age-dependent changes in strength. Moreover, there has been limited investigation into age-dependent changes in muscle stiffness. Here, we investigate how age alters muscle and tendon stiffness and their influence on ankle stiffness. We hypothesized that age-related changes in muscle and tendon contribute to reduced ankle stiffness in older adults and evaluated this hypothesis when either load or effort were matched. We used B-mode ultrasound with joint-level perturbations to quantify ankle, muscle, and tendon stiffness across a range of loads and efforts in seventeen healthy younger and older adults. At matched loads relevant to standing and the stance phase of walking, there was no significant difference in ankle, muscle, or tendon stiffness between groups (all p > 0.13). However, at matched effort, older adults exhibited a significant decrease in ankle (27%; p = 0.008), muscle (37%; p = 0.02), and tendon stiffness (22%; p = 0.03) at 30% of maximum effort. This is consistent with our finding that older adults were 36% weaker than younger adults in plantarflexion (p = 0.004). Together, these results indicate that, at the loads tested in this study, there are no age-dependent changes in the mechanical properties of muscle or tendon, only differences in strength that result in altered ankle, muscle, and tendon stiffness at matched levels of effort.

2.
Artigo em Inglês | MEDLINE | ID: mdl-38196852

RESUMO

Background: Patients with persistent glenohumeral osteoarthritis symptoms despite nonoperative management may pursue anatomic total shoulder arthroplasty (TSA). TSA revision rates are higher in patients with preoperative eccentric (asymmetric posterior erosion) compared with concentric (symmetric) glenoid deformity. If posterior rotator cuff deficiency demonstrated preoperatively in patients with eccentric deformity persists after TSA, it may manifest as relative weakness in external compared with internal rotation secondary to deficient activity of the shoulder external rotator muscles. Persistent posterior rotator cuff deficiency is hypothesized to contribute to TSA failures. However, it remains unknown whether rotational strength is impaired after TSA in patients with eccentric deformity. Our goal was to determine if patients with eccentric deformity exhibit relative external rotation weakness that may be explained by posterior rotator cuff deficiency after TSA. Methods: Patients who were >1 year after TSA for primary glenohumeral osteoarthritis and had had preoperative eccentric or concentric deformity were prospectively recruited. Torque was measured and electromyography was performed during maximal isometric contractions in 26 three-dimensional direction combinations. Relative strength in opposing directions (strength balance) and muscle activity of 6 shoulder rotators were compared between groups. Results: The internal (+) and external (-) rotation component of strength balance did not differ in patients with eccentric (mean internal-external rotation component of strength balance: -7.6% ± 7.4%) compared with concentric deformity (-10.3% ± 6.8%) (mean difference: 2.7% [95% confidence interval (CI), -1.3% to 6.7%]; p = 0.59), suggesting no relative external rotation weakness. Infraspinatus activity was reduced in patients with eccentric (43.9% ± 10.4% of maximum voluntary contraction [MVC]) compared with concentric (51.3% ± 10.4% of MVC) deformity (mean difference: -7.4% [95% CI, -13.4% to -1.4%] of MVC; p = 0.04). Conclusions: A relative external rotation strength deficit following TSA was not found, despite evidence of reduced infraspinatus activity, in the eccentric-deformity group. Reduced infraspinatus activity suggests that posterior rotator cuff deficiencies may persist following TSA in patients with eccentric deformities. Longitudinal study is necessary to evaluate muscle imbalance as a contributor to higher TSA failure rates. Level of Evidence: Prognostic Level III. See Instructions for Authors for a complete description of levels of evidence.

3.
bioRxiv ; 2023 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-38045313

RESUMO

Older adults have difficulty maintaining balance when faced with postural disturbances, a task that is influenced by the stiffness of the triceps surae and Achilles tendon. Age-related changes in Achilles tendon stiffness have been reported at matched levels of effort, but measures typically have not been made at matched loads, which is important due to age-dependent changes in strength. Moreover, age-dependent changes in muscle stiffness have yet to be tested. Here, we investigate how age alters muscle and tendon stiffness and their influence on ankle stiffness. We hypothesized that age-related changes in muscle and tendon contribute to reduced ankle stiffness in older adults and evaluated this hypothesis when either load or effort were matched. We used B-mode ultrasound with joint-level perturbations to quantify ankle, muscle, and tendon stiffness across a range of loads and efforts in seventeen healthy younger and older adults. At matched loads, there was no significant difference in ankle, muscle, or tendon stiffness between groups (all p>0.13). However, at matched effort, older adults exhibited a significant decrease in ankle (27%; p=0.008), muscle (37%; p=0.02), and tendon stiffness (22%; p=0.03) at 30% of maximum effort. This is consistent with our finding that older adults were 36% weaker than younger adults in plantarflexion (p=0.004). Together these results indicate that, at the loads tested in this study, there are no age-dependent changes in the mechanical properties of muscle or tendon, only differences in strength that result in altered ankle, muscle, and tendon stiffness at matched levels of effort.

4.
Artigo em Inglês | MEDLINE | ID: mdl-37747854

RESUMO

While treating sensorimotor impairments, a therapist may provide physical assistance by guiding their patient's limb to teach a desired movement. In this scenario, a key aspect is the compliance of the interaction, as the therapist can provide subtle cues or impose a movement as demonstration. One approach to studying these interactions involves haptically connecting two individuals through robotic interfaces. Upper-limb studies have shown that pairs of connected individuals estimate one another's goals during tracking tasks by exchanging haptic information, resulting in improved performance dependent on the ability of one's partner and the stiffness of the virtual connection. In this study, our goal was to investigate whether these findings generalize to the lower limb during an ankle tracking task. Pairs of healthy participants (i.e., dyads) independently tracked target trajectories with and without connections rendered between two ankle robots. We tested the effects of connection stiffness as well as visual noise to manipulate the correlation of tracking errors between partners. In our analysis, we compared changes in task performance across conditions while tracking with and without the connection. We found that tracking improvements while connected increased with connection stiffness, favoring the worse partner in the dyad during hard connections. We modeled the interaction as three springs in series, considering the stiffness of the connection and each partners' ankle, to show that improvements were likely due to a cancellation of random tracking errors between partners. These results suggest a simplified mechanism of improvements compared to what has been reported during upper-limb dyadic tracking.

5.
J Neurophysiol ; 130(4): 895-909, 2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37671425

RESUMO

Oxaliplatin (OX) chemotherapy can lead to long-term sensorimotor impairments in cancer survivors. The impairments are often thought to be caused by OX-induced progressive degeneration of sensory afferents known as length-dependent dying-back sensory neuropathy. However, recent preclinical work has identified functional defects in the encoding of muscle proprioceptors and in motoneuron firing. These functional defects in the proprioceptive sensorimotor circuitry could readily impair muscle stretch reflexes, a fundamental building block of motor coordination. Given that muscle proprioceptors are distributed throughout skeletal muscle, defects in stretch reflexes could be widespread, including in the proximal region where dying-back sensory neuropathy is less prominent. All previous investigations on chemotherapy-related reflex changes focused on distal joints, leading to results that could be influenced by dying-back sensory neuropathy rather than more specific changes to sensorimotor circuitry. Our study extends this earlier work by quantifying stretch reflexes in the shoulder muscles in 16 cancer survivors and 16 healthy controls. Conduction studies of the sensory nerves in hand were completed to detect distal sensory neuropathy. We found no significant differences in the short-latency stretch reflexes (amplitude and latency) of the shoulder muscles between cancer survivors and healthy controls, contrasting with the expected differences based on the preclinical work. Our results may be linked to differences between the human and preclinical testing paradigms including, among many possibilities, differences in the tested limb or species. Determining the source of these differences will be important for developing a complete picture of how OX chemotherapy contributes to long-term sensorimotor impairments.NEW & NOTEWORTHY Our results showed that cancer survivors after oxaliplatin (OX) treatment exhibited stretch reflexes that were comparable with age-matched healthy individuals in the proximal upper limb. The lack of OX effect might be linked to differences between the clinical and preclinical testing paradigms. These findings refine our expectations derived from the preclinical study and guide future assessments of OX effects that may have been insensitive to our measurement techniques.


Assuntos
Sobreviventes de Câncer , Neoplasias , Humanos , Oxaliplatina , Extremidade Superior , Músculo Esquelético
6.
Exp Brain Res ; 241(10): 2395-2407, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37634132

RESUMO

Movement goals are an essential component of motor planning, altering voluntary and involuntary motor actions. While there have been many studies of motor planning, it is unclear if motor goals influence voluntary and involuntary movements at similar latencies. The objectives of this study were to determine how long it takes to prepare a motor action and to compare this time for voluntary and involuntary movements. We hypothesized a prepared motor action would influence voluntarily and involuntarily initiated movements at the same latency. We trained subjects to reach with a forced reaction time paradigm and used a startling acoustic stimulus (SAS) to trigger involuntary initiation of the same reaches. The time available to prepare was controlled by varying when one of four reach targets was presented. Reach direction was used to evaluate accuracy. We quantified the time between target presentation and the cue or trigger for movement initiation. We found that reaches were accurately initiated when the target was presented 48 ms before the SAS and 162 ms before the cue to voluntarily initiate movement. While the SAS precisely controlled the latency of movement onset, voluntary reach onset was more variable. We, therefore, quantified the time between target presentation and movement onset and found no significant difference in the time required to plan reaches initiated voluntarily or involuntarily (∆ = 8 ms, p = 0.2). These results demonstrate that the time required to plan accurate reaches is similar regardless of if they are initiated voluntarily or triggered involuntarily. This finding may inform the understanding of neural pathways governing storage and access of motor plans.


Assuntos
Discinesias , Reflexo de Sobressalto , Humanos , Movimento , Tempo de Reação , Cognição , Estimulação Acústica , Eletromiografia
7.
J Exp Biol ; 226(14)2023 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-37350252

RESUMO

Regulating ankle mechanics is essential for controlled interactions with the environment and rejecting unexpected disturbances. Ankle mechanics can be quantified by impedance, the dynamic relationship between an imposed displacement and the torque generated in response. Ankle impedance in the sagittal plane depends strongly on the triceps surae and Achilles tendon, but their relative contributions remain unknown. It is commonly assumed that ankle impedance is controlled by changing muscle activation and, thereby, muscle impedance, but this ignores that tendon impedance also changes with activation-induced loading. Thus, we sought to determine the relative contributions from the triceps surae and Achilles tendon during conditions relevant to postural control. We used a novel technique that combines B-mode ultrasound imaging with joint-level perturbations to quantify ankle, muscle and tendon impedance simultaneously across activation levels from 0% to 30% of maximum voluntary contraction. We found that muscle and tendon stiffness, the static component of impedance, increased with voluntary plantarflexion contractions, but that muscle stiffness exceeded tendon stiffness at very low loads (21±7 N). Above these loads, corresponding to 1.3% of maximal strength for an average participant in our study, ankle stiffness was determined predominately by Achilles tendon stiffness. At approximately 20% MVC for an average participant, ankle stiffness was 4 times more sensitive to changes in tendon stiffness than to changes in muscle stiffness. We provide the first empirical evidence demonstrating that the nervous system, through changes in muscle activations, leverages the non-linear properties of the Achilles tendon to increase ankle stiffness during postural conditions.


Assuntos
Tendão do Calcâneo , Tornozelo , Humanos , Tendão do Calcâneo/diagnóstico por imagem , Tendão do Calcâneo/fisiologia , Impedância Elétrica , Articulação do Tornozelo/fisiologia , Músculo Esquelético/fisiologia
8.
J Neurophysiol ; 129(1): 7-16, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36475940

RESUMO

The spinal stretch reflex is a fundamental building block of motor function, with a sensitivity that varies continuously during movement and when changing between movement and posture. Many have investigated task-dependent reflex sensitivity, but few have provided simple, quantitative analyses of the relationship between the volitional control and stretch reflex sensitivity throughout tasks that require coordinated activity of several muscles. Here, we develop such an analysis and use it to test the hypothesis that modulation of reflex sensitivity during movement can be explained by the balance of activity within agonist and antagonist muscles better than by activity only in the muscle homonymous with the reflex. Subjects completed hundreds of flexion and extension movements as small, pseudorandom perturbations of elbow angle were applied to obtain estimates of stretch reflex amplitude throughout the movement. A subset of subjects performed a postural control task with muscle activities matched to those during movement. We found that reflex modulation during movement can be described by background activity in antagonist muscles about the elbow much better than by activity only in the muscle homonymous to the reflex (P < 0.001). Agonist muscle activity enhanced reflex sensitivity, whereas antagonist activity suppressed it. Surprisingly, the magnitude of these effects was similar, suggesting a balance of control between agonists and antagonists very different from the dominance of sensitivity to homonymous activity during posture. This balance is due to a large decrease in sensitivity to homonymous muscle activity during movement rather than substantial changes in the influence of antagonistic muscle activity.NEW & NOTEWORTHY This study examined the sensitivity of the stretch reflexes elicited in elbow muscles to the background activity in these same muscles during movement and postural tasks. We found a heightened reciprocal control of reflex sensitivity during movement that was not present during maintenance of posture. These results help explain previous discrepancies in reflex sensitivity measured during movement and posture and provide a simple model for assessing their contributions to muscle activity in both tasks.


Assuntos
Articulação do Cotovelo , Reflexo de Estiramento , Humanos , Reflexo de Estiramento/fisiologia , Cotovelo , Eletromiografia , Articulação do Cotovelo/fisiologia , Músculo Esquelético/fisiologia
9.
Artigo em Inglês | MEDLINE | ID: mdl-36449583

RESUMO

Optimizing skill acquisition during novel motor tasks and regaining lost motor functions have been the interest of many researchers over the past few decades. One approach shown to accelerate motor learning involves haptically coupling two individuals through robotic interfaces. Studies have shown that an individual's solo performance during upper-limb tracking tasks may improve after haptically-coupled training with a partner. In this study, our goal was to investigate whether these findings can be translated to lower-limb motor tasks, more specifically, during an ankle position tracking task. Using one-degree-of-freedom ankle movements, pairs of participants (i.e., dyads) tracked target trajectories independently. Participants alternated between tracking trials with and without haptic coupling, achieved by rendering a virtual spring between two ankle rehabilitation robots. In our analysis, we compared changes in task performance across trials while training with and without haptic coupling. The tracking performance of both individuals (i.e., dyadic task performance) improved during haptic coupling, which was likely due to averaging of random errors of the dyadic pair during tracking. However, we found that dyadic haptic coupling did not lead to faster individual learning for the tracking task. These results suggest that haptic coupling between unimpaired individuals may not be an effective method of training ankle movements during a simple, one-degree-of-freedom task.


Assuntos
Tornozelo , Análise e Desempenho de Tarefas , Humanos , Tecnologia Háptica , Aprendizagem , Extremidade Inferior , Destreza Motora
10.
J Biomech ; 143: 111282, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36088869

RESUMO

Ankle sprains are the most common musculoskeletal injury, typically resulting from excessive inversion of the ankle. One way to prevent excessive inversion and maintain ankle stability is to generate a stiffness that is sufficient to resist externally imposed rotations. Frontal-plane ankle stiffness increases as participants place more weight on their ankle, but whether this effect is due to muscle activation or axial loading of the ankle is unknown. Identifying whether and to what extent axial loading affects ankle stiffness is important in understanding what role the passive mechanics of the ankle joint play in maintaining its stability. The objective of this study was to determine the effect of passive axial load on frontal-plane ankle stiffness. We had subjects seated in a chair as an axial load was applied to the ankle ranging from 10% to 50% body weight. Small rotational perturbations were applied to the ankle in the frontal plane to estimate stiffness. We found a significant, linear, 3-fold increase in ankle stiffness with axial load from the range of 0% body weight to 50% body weight. This increase could not be due to muscle activity as we observed no significant axial-load-dependent change in any of the recorded muscle activations. These results demonstrate that axial loading is a significant contributor to maintaining frontal-plane ankle stability, and that disruptions to the mechanism mediating this sensitivity of stiffness to axial loading may result in pathological cases of ankle instability.


Assuntos
Traumatismos do Tornozelo , Tornozelo , Tornozelo/fisiologia , Articulação do Tornozelo/fisiologia , Fenômenos Biomecânicos , Peso Corporal , Humanos , Músculos
11.
Clin Orthop Relat Res ; 480(11): 2217-2228, 2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-35675568

RESUMO

BACKGROUND: When nonoperative measures do not alleviate the symptoms of glenohumeral osteoarthritis (OA), patients with advanced OA primarily are treated with anatomic total shoulder arthroplasty (TSA). It is unknown why TSAs performed in patients with eccentric (asymmetric glenoid wear) compared with concentric (symmetric glenoid wear) deformities exhibit higher failure rates, despite surgical advances. Persistent disruption of the posterior-to-anterior rotator cuff (RC) force couple resulting from posterior RC intramuscular degeneration in patients with eccentric deformities could impair external rotation strength and may contribute to eventual TSA failure. Pain and intramuscular fat within the RC muscles may impact external rotation strength measures and are important to consider. QUESTIONS/PURPOSES: (1) Is there relative shoulder external rotation weakness in patients with eccentric compared with concentric deformities? (2) Is there higher resting or torque-dependent pain in patients with eccentric compared with concentric deformities? (3) Do patients with eccentric deformities have higher posterior-to-anterior RC intramuscular fat percent ratios than patients with concentric deformities? METHODS: From February 2020 to November 2021, 65% (52 of 80) of patients with OA met study eligibility criteria. Of these, 63% (33 of 52) of patients enrolled and provided informed consent. From a convenience sample of 21 older adults with no history of shoulder pain, 20 met eligibility criteria as control participants. Of the convenience sample, 18 patients enrolled and provided informed consent. In total for this prospective, cross-sectional study, across patients with OA and control participants, 50% (51 of 101) of participants were enrolled and allocated into the eccentric (n = 16), concentric (n = 17), and control groups (n = 18). A 3-degree-of-freedom load cell was used to sensitively quantify strength in all three dimensions surrounding the shoulder. Participants performed maximal isometric contractions in 26 1-, 2-, and 3-degree-of-freedom direction combinations involving adduction/abduction, internal/external rotation, and/or flexion/extension. To test for relative external rotation weakness, we quantified relative strength in opposing directions (three-dimensional [3D] strength balance) along the X (+adduction/-abduction), Y (+internal/-external rotation), and Z (+flexion/-extension) axes and compared across the three groups. Patients with OA rated their shoulder pain (numerical rating 0-10) before testing at rest (resting pain; response to "How bad is your pain today?") and with each maximal contraction (torque-dependent pain; numerical rating 0-10). Resting and torque-dependent pain were compared between patients with eccentric and concentric deformities to determine if pain was higher in the eccentric group. The RC cross-sectional areas and intramuscular fat percentages were quantified on Dixon-sequence MRIs by a single observer who performed manual segmentation using previously validated methods. Ratios of posterior-to-anterior RC fat percent (infraspinatus + teres minor fat percent/subscapularis fat percent) were computed and compared between the OA groups. RESULTS: There was no relative external rotation weakness in patients with eccentric deformities (Y component of 3D strength balance, mean ± SD: -4.7% ± 5.1%) compared with patients with concentric deformities (-0.05% ± 4.5%, mean difference -4.7% [95% CI -7.5% to -1.9%]; p = 0.05). However, there was more variability in 3D strength balance in the eccentric group (95% CI volume, % 3 : 893) compared with the concentric group (95% CI volume, % 3 : 579). In patients with eccentric compared with concentric deformities, there was no difference in median (IQR) resting pain (1.0 [3.0] versus 2.0 [2.3], mean rank difference 4.5 [95% CI -6.6 to 16]; p = 0.61) or torque-dependent pain (0.70 [3.0] versus 0.58 [1.5], mean rank difference 2.6 [95% CI -8.8 to 14]; p = 0.86). In the subset of 18 of 33 patients with OA who underwent MRI, seven patients with eccentric deformities demonstrated a higher posterior-to-anterior RC fat percent ratio than the 11 patients with concentric deformities (1.2 [0.8] versus 0.70 [0.3], mean rank difference 6.4 [95% CI 1.4 to 11.5]; p = 0.01). CONCLUSION: Patients with eccentric deformities demonstrated higher variability in strength compared with patients with concentric deformities. This increased variability suggests patients with potential subtypes of eccentric wear patterns (posterior-superior, posterior-central, and posterior-inferior) may compensate differently for underlying anatomic changes by adopting unique kinematic or muscle activation patterns. CLINICAL RELEVANCE: Our findings highlight the importance of careful clinical evaluation of patients presenting with eccentric deformities because some may exhibit potentially detrimental strength deficits. Recognition of such strength deficits may allow for targeted rehabilitation. Future work should explore the relationship between strength in patients with specific subtypes of eccentric wear patterns and potential forms of kinematic or muscular compensation to determine whether these factors play a role in TSA failures in patients with eccentric deformities.


Assuntos
Osteoartrite , Articulação do Ombro , Idoso , Humanos , Benzopiranos , Estudos Transversais , Osteoartrite/diagnóstico por imagem , Osteoartrite/cirurgia , Fenóis , Estudos Prospectivos , Amplitude de Movimento Articular/fisiologia , Manguito Rotador/diagnóstico por imagem , Manguito Rotador/fisiologia , Manguito Rotador/cirurgia , Articulação do Ombro/diagnóstico por imagem , Articulação do Ombro/fisiologia , Articulação do Ombro/cirurgia , Dor de Ombro
12.
IEEE Trans Biomed Eng ; 69(12): 3657-3666, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35594215

RESUMO

OBJECTIVE: Regulating the impedance of our joints is essential for the effective control of posture and movement. The impedance of a joint is governed mainly by the mechanical properties of the muscle-tendon units spanning it. Many studies have quantified the net impedance of joints but not the specific contributions from the muscles and tendons. The inability to quantify both muscle and tendon impedance limits the ability to determine the causes underlying altered movement control associated with aging, neuromuscular injury, and other conditions that have different effects on muscle and tendon properties. Therefore, we developed a technique to quantify joint, muscle, and tendon impedance simultaneously and evaluated this technique at the human ankle. METHODS: We used a single degree of freedom actuator to deliver pseudorandom rotations to the ankle while measuring the corresponding torques. We simultaneously measured the displacement of the medial gastrocnemius muscle-tendon junction with B-mode ultrasound. From these experimental measurements, we were able to estimate ankle, muscle, and tendon impedance using non-parametric system identification. RESULTS: We validated our estimates by comparing them to previously reported measurements of muscle and tendon stiffness, the position-dependent component of impedance, to demonstrate that our technique generates reliable estimates of these properties. CONCLUSION: Our approach can be used to clarify the respective contributions from the muscle and tendon to the net mechanics of a joint. SIGNIFICANCE: This is a critical step forward in the ultimate goal of understanding how muscles and tendons govern ankle impedance during posture and movement.


Assuntos
Articulação do Tornozelo , Tornozelo , Humanos , Tornozelo/diagnóstico por imagem , Tornozelo/fisiologia , Impedância Elétrica , Articulação do Tornozelo/diagnóstico por imagem , Articulação do Tornozelo/fisiologia , Tendões/diagnóstico por imagem , Músculo Esquelético/diagnóstico por imagem , Músculo Esquelético/fisiologia , Fenômenos Biomecânicos
13.
Front Integr Neurosci ; 16: 802608, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35387200

RESUMO

Behaviors we perform each day, such as manipulating an object or walking, require precise control of the interaction forces between our bodies and the environment. These forces are generated by muscle contractions, specified by the nervous system, and by joint mechanics, determined by the intrinsic properties of the musculoskeletal system. Depending on behavioral goals, joint mechanics might simplify or complicate control of movement by the nervous system. Whether humans can exploit joint mechanics to simplify neural control remains unclear. Here we evaluated if leveraging joint mechanics simplifies neural control by comparing performance in three tasks that required subjects to generate specified torques about the ankle during imposed sinusoidal movements; only one task required torques that could be generated by leveraging the intrinsic mechanics of the joint. The complexity of the neural control was assessed by subjects' perceived difficulty and the resultant task performance. We developed a novel approach that used continuous estimates of ankle impedance, a quantitative description of the joint mechanics, and measures of muscle activity to determine the mechanical and neural contributions to the net ankle torque generated in each task. We found that the torque resulting from changes in neural control was reduced when ankle impedance was consistent with the task being performed. Subjects perceived this task to be easier than those that were not consistent with the impedance of the ankle and were able to perform it with the highest level of consistency across repeated trials. These results demonstrate that leveraging the mechanical properties of a joint can simplify task completion and improve performance.

14.
J Electromyogr Kinesiol ; 62: 102313, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31171406

RESUMO

Daily tasks rely on our ability to generate multi-dimensional shoulder torques. When function is limited, strength assessments are used to identify impairments and guide treatment. However, these assessments are often one-dimensional and limited in their sensitivity to diagnose shoulder pathology. To address these limitations, we have proposed novel metrics to quantify shoulder torque capacity in all directions. To quantify the feasible torque space of the shoulder, we measured maximal volitional shoulder torques in 32 unique directions and fit an ellipsoid model to these data. This ellipsoid model was used to quantify overall strength magnitude, strength balance, and the directions in which participants were strongest and weakest. We used these metrics to characterize three-dimensional shoulder strength in healthy adults and demonstrated their repeatability across days. Finally, using musculoskeletal simulations, we showed that our proposed metrics can distinguish between changes in muscle strength associated with aging or rotator cuff tears and quantified the influence of altered experimental conditions on this diagnostic capacity. Our results demonstrate that the proposed metrics can robustly quantify the feasible torque space of the shoulder and may provide a clinically useful description of the functional capacity of the shoulder in health and disease.


Assuntos
Lesões do Manguito Rotador , Articulação do Ombro , Adulto , Humanos , Músculo Esquelético , Ombro , Torque
15.
J Biomech ; 124: 110565, 2021 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-34167018

RESUMO

Ankle sprains are among the most common musculoskeletal injuries. They are not isolated innocuous injuries as 30-40% of people who sprain their ankles develop chronic ankle instability. Ankle instability is typically assessed under passive unloaded conditions, ignoring any potential contribution of joint loading or muscle activation to the maintenance of ankle stability. Thus, the relevance of unloaded ankle stability assessments to the evaluation of impairments in chronic ankle instability or the prediction of future ankle sprains is questionable. Ankle impedance, which quantifies the resistance to an imposed rotation, has often been used to quantify ankle stability. However, few studies have investigated impedance in the frontal plane where sprains occur, and none have systematically investigated the effect of weight-bearing on ankle impedance. The objective of this study was to determine whether weight-bearing affects frontal plane ankle impedance. We had subjects systematically alter the weight on the tested ankle, while imposed frontal plane rotations were applied to estimate the impedance. We found that ankle stiffness, the static component of impedance, increased proportionally with the weight on the ankle. This increase in stiffness was due to a combination of the increase loading on the joint and the increase in muscle activation that occurs during weight-bearing. Finally, we found that men had a greater stiffness than women over the majority of the weight-bearing range. These results highlight the importance of clinically assessing ankle stability during weight-bearing conditions to better determine the impairments in chronic ankle instability and identify those at risk for ankle sprains.


Assuntos
Traumatismos do Tornozelo , Instabilidade Articular , Entorses e Distensões , Tornozelo , Articulação do Tornozelo , Feminino , Humanos , Masculino , Suporte de Carga
16.
Med Sci Sports Exerc ; 53(11): 2354-2362, 2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34033623

RESUMO

PURPOSE: Glenohumeral instability accounts for 23% of all shoulder injuries among collegiate athletes. The apprehension position-combined shoulder abduction and external rotation-commonly reproduces symptoms in athletes with instability. Rehabilitation aims to increase glenohumeral stability by strengthening functional positions. However, it is unclear how much glenohumeral stability increases with muscle contraction in the apprehension position. The purpose of this study was to determine whether the ability to increase translational glenohumeral stiffness, a quantitative measure of glenohumeral stability, with muscle contraction is reduced in the apprehension position. METHODS: Seventeen asymptomatic adults participated. A precision-instrumented robotic system applied pseudorandom, anterior-posterior displacements to translate the humeral head within the glenoid fossa and measured the resultant forces as participants produced isometric shoulder torques. Measurements were made in neutral abduction (90° abduction/0° external rotation) and apprehension (90° abduction/90° external rotation) positions. Glenohumeral stiffness was estimated from the relationship between applied displacements and resultant forces. The ability to increase glenohumeral stiffness with increasing torque magnitude was compared between positions. RESULTS: On average, participants increased glenohumeral stiffness from passive levels by 91% in the neutral abduction position and only 64% in the apprehension position while producing 10% of maximum torque production. The biggest decrease in the ability to modulate glenohumeral stiffness in the apprehension position was observed for torques generated in abduction (49% lower, P < 0.001) and horizontal abduction (25% lower, P < 0.001). CONCLUSION: Our results demonstrate that individuals are less able to increase glenohumeral stiffness with muscle contraction in the apprehension position compared with a neutral shoulder position. These results may help explain why individuals with shoulder instability more frequently experience symptoms in the apprehension position compared with neutral shoulder positions.


Assuntos
Traumatismos em Atletas/fisiopatologia , Instabilidade Articular/fisiopatologia , Contração Muscular , Articulação do Ombro/fisiologia , Articulação do Ombro/fisiopatologia , Adulto , Fenômenos Biomecânicos , Feminino , Humanos , Masculino , Caracteres Sexuais , Lesões do Ombro , Torque , Adulto Jovem
17.
Front Integr Neurosci ; 15: 796472, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35185484

RESUMO

Muscle activation helps stabilize the glenohumeral joint and prevent dislocations, which are more common at the shoulder than at any other human joint. Feedforward control of shoulder muscles is important for protecting the glenohumeral joint from harm caused by anticipated external perturbations. However, dislocations are frequently caused by unexpected perturbations for which feedback control is essential. Stretch-evoked reflexes elicited by translations of the glenohumeral joint may therefore be an important mechanism for maintaining joint integrity, yet little is known about them. Specifically, reflexes elicited by glenohumeral translations have only been studied under passive conditions, and there have been no investigations of how responses are coordinated across the functional groupings of muscles found at the shoulder. Our objective was to characterize stretch-evoked reflexes elicited by translations of the glenohumeral joint while shoulder muscles are active. We aimed to determine how these responses differ between the rotator cuff muscles, which are essential for maintaining glenohumeral stability, and the primary shoulder movers, which are essential for the large mobility of this joint. We evoked reflexes using anterior and posterior translations of the humeral head while participants produced voluntary isometric torque in six directions spanning the three rotational degrees-of-freedom about the shoulder. Electromyograms were used to measure the stretch-evoked reflexes elicited in nine shoulder muscles. We found that reflex amplitudes were larger in the rotator cuff muscles than in the primary shoulder movers, in part due to increased background activation during torque generation but more so due to an increased scaling of reflex responses with background activation. The reflexes we observed likely arose from the diversity of proprioceptors within the muscles and in the passive structures surrounding the shoulder. The large reflexes observed in the rotator cuff muscles suggest that feedback control of the rotator cuff augments the feedforward control that serves to compress the humeral head into the glenoid. This coordination may serve to stabilize the shoulder rapidly when preparing for and responding to unexpected disturbances.

18.
Annu Int Conf IEEE Eng Med Biol Soc ; 2020: 3807-3810, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-33018830

RESUMO

Completing motor tasks that require contact is dependent on an ability to regulate the relationship between limb motions and interaction forces with the environment. This can be achieved by exploiting the mechanical properties of a limb or through active regulation of joint torques through changes in muscle activation. Leveraging the mechanical properties of a joint might simplify neural control when they are matched to the functional requirements of a task. The purpose of this study was to determine if humans change their control strategy, relying on limb mechanics rather than regulated muscle activation, when feasible. This was accomplished by measuring ankle impedance and muscle activation strategies in three tasks requiring joint torques to: oppose movement, assist movement, or remain constant during movement. We found that subjects produced more torque due to impedance and less torque due to muscle activation in the torque-oppose task, the only task that could feasibly be completed through impedance modulation. These results demonstrate that people do leverage the mechanical properties of a joint to complete certain task, lessening the need for precisely timed muscle contractions.


Assuntos
Movimento , Fenômenos Fisiológicos do Sistema Nervoso , Articulação do Tornozelo , Humanos , Contração Muscular , Torque
19.
Annu Int Conf IEEE Eng Med Biol Soc ; 2020: 4819-4822, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-33019069

RESUMO

Appropriate regulation of joint impedance is required to successfully navigate our environment. Joint impedance is strongly dependent upon the mechanical properties of the muscles and tendons spanning it. While the impedance of the joint has been well characterized, methods to determine the individual contribution from the muscles and tendons are limited. This is a crucial gap as muscle and tendon impedance can be selectively altered by aging, pathology, or injury. Therefore, we developed an innovative in vivo method that allows for the simultaneous quantification of joint, muscle, and tendon impedance. Stochastic perturbations of ankle angle were applied while a B-mode ultrasound was used to image the displacement of the medial gastrocnemius muscle-tendon junction. Non-parametric system identification was used to quantify ankle impedance and the frequency response function between ankle rotations and muscle-tendon junction displacements. The latter represents, when scaled by Achilles tendon moment arm, the ratio between the net musculotendon impedance and the impedance of the muscle, a relationship we refer to as the impedance ratio. Muscle and tendon impedance can be calculated from these experimental estimates. The ability to simultaneously quantify joint, muscle, and tendon impedance will provide a clearer understanding their respective roles in our ability to navigate our environment, and how changes in those roles may contribute to functional impairments.


Assuntos
Tendão do Calcâneo , Tornozelo , Tendão do Calcâneo/diagnóstico por imagem , Articulação do Tornozelo/diagnóstico por imagem , Impedância Elétrica , Músculo Esquelético
20.
J Biomech ; 110: 109961, 2020 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-32827769

RESUMO

Extracellular matrix (ECM) is widely considered to be integral to the function of skeletal muscle, providing mechanical support, transmitting force, and contributing to passive stiffness. Many functions and dysfunctions attributed to ECM are thought to stem from its mechanical properties, yet there are few data describing the mechanics of intact ECM. Such measurements require isolating intact ECM from the muscle cells it surrounds. The objectives of this study were to quantify the efficiency of three techniques for this purpose: Triton, Triton with sodium dodecyl sulfate, and latrunculin B; and to determine their impact on properties of the remaining ECM. Efficiency was quantified by DNA content and evaluation of western blot intensities for myosin and actin. The properties of ECM were quantified by collagen content and uniaxial tensile testing. We found that latrunculin B was the most efficient method for removing skeletal muscle cells, reducing DNA content to less than 10% of that seen in control muscles, and substantially reducing the myosin and actin to 15% and 23%, respectively; these changes were larger than for the competing methods. Collagen content after decellularization was not significantly different from control muscles for all methods. Only the stiffness of the muscles decellularized with latrunculin B differed significantly from control, having a Young's modulus reduced by 47% compared to the other methods at matched stresses. Our results suggest that latrunculin B is the most efficient method for decellularizing skeletal muscle and that the remaining ECM accounts for approximately half of the stiffness in passive muscle.


Assuntos
Colágeno , Matriz Extracelular , Fibras Musculares Esqueléticas , Músculo Esquelético , Dodecilsulfato de Sódio , Engenharia Tecidual
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...