Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Adv ; 9(26): eadg6218, 2023 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-37379383

RESUMO

Individuals with Down syndrome (DS) display chronic hyperactivation of interferon signaling. However, the clinical impacts of interferon hyperactivity in DS are ill-defined. Here, we describe a multiomics investigation of interferon signaling in hundreds of individuals with DS. Using interferon scores derived from the whole blood transcriptome, we defined the proteomic, immune, metabolic, and clinical features associated with interferon hyperactivity in DS. Interferon hyperactivity associates with a distinct proinflammatory phenotype and dysregulation of major growth signaling and morphogenic pathways. Individuals with the highest interferon activity display the strongest remodeling of the peripheral immune system, including increased cytotoxic T cells, B cell depletion, and monocyte activation. Interferon hyperactivity accompanies key metabolic changes, most prominently dysregulated tryptophan catabolism. High interferon signaling stratifies a subpopulation with elevated rates of congenital heart disease and autoimmunity. Last, a longitudinal case study demonstrated that JAK inhibition normalizes interferon signatures with therapeutic benefit in DS. Together, these results justify the testing of immune-modulatory therapies in DS.


Assuntos
Síndrome de Down , Humanos , Síndrome de Down/tratamento farmacológico , Síndrome de Down/complicações , Síndrome de Down/genética , Proteômica , Interferons/metabolismo , Autoimunidade , Transdução de Sinais/genética
2.
Cancer Res ; 83(15): 2543-2556, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37205634

RESUMO

Liposarcoma is the most commonly occurring soft-tissue sarcoma and is frequently characterized by amplification of chromosome region 12q13-15 harboring the oncogenes MDM2 and CDK4. This unique genetic profile makes liposarcoma an attractive candidate for targeted therapeutics. While CDK4/6 inhibitors are currently employed for treatment of several cancers, MDM2 inhibitors have yet to attain clinical approval. Here, we report the molecular characterization of the response of liposarcoma to the MDM2 inhibitor nutlin-3. Treatment with nutlin-3 led to upregulation of two nodes of the proteostasis network: the ribosome and the proteasome. CRISPR/Cas9 was used to perform a genome-wide loss of function screen that identified PSMD9, which encodes a proteasome subunit, as a regulator of response to nutlin-3. Accordingly, pharmacologic studies with a panel of proteasome inhibitors revealed strong combinatorial induction of apoptosis with nutlin-3. Mechanistic studies identified activation of the ATF4/CHOP stress response axis as a potential node of interaction between nutlin-3 and the proteasome inhibitor carfilzomib. CRISPR/Cas9 gene editing experiments confirmed that ATF4, CHOP, and the BH3-only protein, NOXA, are all required for nutlin-3 and carfilzomib-induced apoptosis. Furthermore, activation of the unfolded protein response using tunicamycin and thapsigargin was sufficient to activate the ATF4/CHOP stress response axis and sensitize to nutlin-3. Finally, cell line and patient-derived xenograft models demonstrated combinatorial effects of treatment with idasanutlin and carfilzomib on liposarcoma growth in vivo. Together, these data indicate that targeting of the proteasome could improve the efficacy of MDM2 inhibitors in liposarcoma. SIGNIFICANCE: Targeting the proteasome in combination with MDM2 inhibition activates the ATF4/CHOP stress response axis to induce apoptosis in liposarcoma, providing a potential therapeutic approach for the most common soft-tissue sarcoma.


Assuntos
Antineoplásicos , Lipossarcoma , Humanos , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Proteína Supressora de Tumor p53/genética , Lipossarcoma/tratamento farmacológico , Lipossarcoma/genética , Antineoplásicos/farmacologia , Inibidores de Proteassoma/farmacologia , Apoptose , Fator 4 Ativador da Transcrição/genética , Fator 4 Ativador da Transcrição/metabolismo
3.
Nat Commun ; 10(1): 4766, 2019 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-31628327

RESUMO

Trisomy 21 (T21) causes Down syndrome (DS), affecting immune and neurological function by ill-defined mechanisms. Here we report a large metabolomics study of plasma and cerebrospinal fluid, showing in independent cohorts that people with DS produce elevated levels of kynurenine and quinolinic acid, two tryptophan catabolites with potent immunosuppressive and neurotoxic properties, respectively. Immune cells of people with DS overexpress IDO1, the rate-limiting enzyme in the kynurenine pathway (KP) and a known interferon (IFN)-stimulated gene. Furthermore, the levels of IFN-inducible cytokines positively correlate with KP dysregulation. Using metabolic tracing assays, we show that overexpression of IFN receptors encoded on chromosome 21 contribute to enhanced IFN stimulation, thereby causing IDO1 overexpression and kynurenine overproduction in cells with T21. Finally, a mouse model of DS carrying triplication of IFN receptors exhibits KP dysregulation. Together, our results reveal a mechanism by which T21 could drive immunosuppression and neurotoxicity in DS.


Assuntos
Cromossomos Humanos Par 21/genética , Síndrome de Down/genética , Cinurenina/metabolismo , Receptores de Interferon/genética , Trissomia , Animais , Vias Biossintéticas/genética , Linhagem Celular , Citocinas/metabolismo , Síndrome de Down/metabolismo , Expressão Gênica , Humanos , Indolamina-Pirrol 2,3,-Dioxigenase/genética , Indolamina-Pirrol 2,3,-Dioxigenase/metabolismo , Metabolômica/métodos , Camundongos Endogâmicos C57BL , Ácido Quinolínico/metabolismo , Receptores de Interferon/metabolismo
4.
Cell Rep ; 24(12): 3224-3236, 2018 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-30232004

RESUMO

The transcriptional repressor ΔNp63α is a potent oncogene widely overexpressed in squamous cell carcinomas (SCCs) of diverse tissue origins, where it promotes malignant cell proliferation and survival. We report here the results of a genome-wide CRISPR screen to identify pathways controlling ΔNp63α-dependent cell proliferation, which revealed that the small GTPase RHOA blocks cell division upon ΔNp63α knockdown. After ΔNp63α depletion, RHOA activity is increased, and cells undergo RHOA-dependent proliferation arrest along with transcriptome changes indicative of increased TGF-ß signaling. Mechanistically, ΔNp63α represses transcription of TGFB2, which induces a cell cycle arrest that is partially dependent on RHOA. Ectopic TGFB2 activates RHOA and impairs SCC proliferation, and TGFB2 neutralization restores cell proliferation during ΔNp63α depletion. Genomic data from tumors demonstrate inactivation of RHOA and the TGFBR2 receptor and ΔNp63α overexpression in more than 80% of lung SCCs. These results reveal a signaling pathway controlling SCC proliferation that is potentially amenable to pharmacological intervention.


Assuntos
Carcinoma de Células Escamosas/genética , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Neoplasias Pulmonares/genética , Fatores de Transcrição/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/patologia , Linhagem Celular Tumoral , Humanos , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Fatores de Transcrição/genética , Fator de Crescimento Transformador beta2/genética , Fator de Crescimento Transformador beta2/metabolismo , Proteínas Supressoras de Tumor/genética , Proteína rhoA de Ligação ao GTP/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...