Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Geobiology ; 20(3): 421-434, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35014744

RESUMO

Iron(II) (Fe(II)) can be formed by abiotic Fe(III) photoreduction, particularly when Fe(III) is organically complexed. Light-influenced environments often overlap or even coincide with oxic or microoxic geochemical conditions, for example, in sediments. So far, it is unknown whether microaerophilic Fe(II)-oxidizing bacteria are able to use the Fe(II) produced by Fe(III) photoreduction as electron donor. Here, we present an adaption of the established agar-stabilized gradient tube approach in comparison with liquid cultures for the cultivation of microaerophilic Fe(II)-oxidizing microorganisms by using a ferrihydrite-citrate mixture undergoing Fe(III) photoreduction as Fe(II) source. We quantified oxygen and Fe(II) gradients with amperometric and voltammetric microelectrodes and evaluated microbial growth by qPCR of 16S rRNA genes. We showed that gradients of dissolved Fe(II) (maximum Fe(II) concentration of 1.25 mM) formed in the gradient tubes when incubated in blue or UV light (400-530 nm or 350-400 nm). Various microaerophilic Fe(II)-oxidizing bacteria (Curvibacter sp. and Gallionella sp.) grew by oxidizing Fe(II) that was produced in situ by Fe(III) photoreduction. Best growth for these species, based on highest gene copy numbers, was observed in incubations using UV light in both liquid culture and gradient tubes containing 8 mM ferrihydrite-citrate mixtures (1:1), due to continuous light-induced Fe(II) formation. Microaerophilic Fe(II)-oxidizing bacteria contributed up to 40% to the overall Fe(II) oxidation within 24 h of incubation in UV light. Our results highlight the potential importance of Fe(III) photoreduction as a source of Fe(II) for Fe(II)-oxidizing bacteria by providing Fe(II) in illuminated environments, even under microoxic conditions.


Assuntos
Compostos Férricos , Compostos Ferrosos , Bactérias , Ácido Cítrico , Oxirredução , RNA Ribossômico 16S/genética
2.
Sci Total Environ ; 814: 152767, 2022 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-34982989

RESUMO

Iron(III) photoreduction is an important source of Fe(II) in illuminated aquatic and sedimentary environments. Under oxic conditions, the Fe(II) can be re-oxidized by oxygen (O2) forming reactive O-species such as hydrogen peroxide (H2O2) which further react with Fe(II) thus enhancing Fe(II) oxidation rates. However, it is unknown by aquatic sediments how the parameters wavelength of radiation, photon flux, origin of Fe(III) source and presence or absence of O2 influence the extent of Fe(II) and H2O2 turnover. We studied this using batch experiments with different Fe(III)-organic complexes mimicking sedimentary conditions. We found that wavelengths <500 nm are necessary to initiate Fe(III) photoreduction and that the photon flux, wavelength and identity of Fe(III)-complexing organic acids control the kinetics of Fe(III) photoreduction. The formation of photo-susceptible Fe(III)-organic complexes did not depend on whether the Fe(III) source was biogenically produced, poorly-crystalline Fe(III) oxyhydroxides or chemically synthesized ferrihydrite. Oxic conditions caused chemical re-oxidation of Fe(II) and accumulation of H2O2. The photon flux, wavelength and availability of Fe(III)-complexing organic molecules are critical for the balance between concurrent Fe(III) photoreduction and abiotic Fe(II) oxidation and may even lead to a steady-state concentration of Fe(II) in the micromolar range. These results help understand and predict Fe(III) photoreduction dynamics and in-situ formation of Fe(II) in oxic or anoxic, illuminated and organic-rich environments.


Assuntos
Compostos Férricos , Oxigênio , Água Doce , Sedimentos Geológicos , Peróxido de Hidrogênio , Oxirredução
3.
Nat Rev Microbiol ; 19(6): 360-374, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33526911

RESUMO

Biogeochemical cycling of iron is crucial to many environmental processes, such as ocean productivity, carbon storage, greenhouse gas emissions and the fate of nutrients, toxic metals and metalloids. Knowledge of the underlying processes involved in iron cycling has accelerated in recent years along with appreciation of the complex network of biotic and abiotic reactions dictating the speciation, mobility and reactivity of iron in the environment. Recent studies have provided insights into novel processes in the biogeochemical iron cycle such as microbial ammonium oxidation and methane oxidation coupled to Fe(III) reduction. They have also revealed that processes in the biogeochemical iron cycle spatially overlap and may compete with each other, and that oxidation and reduction of iron occur cyclically or simultaneously in many environments. This Review discusses these advances with particular focus on their environmental consequences, including the formation of greenhouse gases and the fate of nutrients and contaminants.


Assuntos
Bactérias/metabolismo , Ferro/química , Ferro/metabolismo , Ciclo do Carbono , Ecossistema , Ciclo do Nitrogênio , Oxirredução
4.
Environ Sci Technol ; 54(6): 3209-3218, 2020 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-32064861

RESUMO

Iron (Fe) biogeochemistry in marine sediments is driven by redox transformations creating Fe(II) and Fe(III) gradients. As sediments are physically mixed by wave action or bioturbation, Fe gradients re-establish regularly. In order to identify the response of dissolved Fe(II) (Fe2+) and Fe mineral phases toward mixing processes, we performed voltammetric microsensor measurements, sequential Fe extractions, and Mössbauer spectroscopy of 12 h light-dark cycle incubated marine coastal sediment. Fe2+ decreased during 7 days of undisturbed incubation from approximately 400 to 60 µM. In the first 2-4 days of incubation, Fe2+ accumulated up to 100 µM in the top 2 mm due to Fe(III) photoreduction. After physical perturbation at day 7, Fe2+ was re-mobilized reaching concentrations of 320 µM in 30 mm depth, which decreased to below detection limit within 2 days afterward. Mössbauer spectroscopy showed that the relative abundance of metastable iron-sulfur mineral phases (FeSx) increased during initial incubation and decreased together with pyrite (FeS2) after perturbation. We show that Fe2+ mobilization in marine sediments is stimulated by chemical changes caused by physical disturbances impacting the Fe redox distribution. Our study suggests that, in addition to microbial and abiotic Fe(III) reduction, including Fe(III) photoreduction, physical mixing processes induce chemical changes providing sediments and the inhabiting microbial community with Fe2+.


Assuntos
Compostos Férricos , Sedimentos Geológicos , Compostos Ferrosos , Oxirredução , Enxofre
5.
Environ Sci Process Impacts ; 22(1): 12-24, 2020 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-31904051

RESUMO

Light energy is a driver for many biogeochemical element cycles in aquatic systems. The sunlight-induced photochemical reduction of ferric iron (Fe(iii) photoreduction) to ferrous iron (Fe(ii)) by either direct ligand-to-metal charge transfer or by photochemically produced radicals can be an important source of dissolved Feaq2+ in aqueous and sedimentary environments. Reactive oxygen species (ROS) are formed by a variety of light-dependent reactions. Those ROS can oxidize Fe(ii) or reduce Fe(iii), and due to their high reactivity they are key oxidants in aquatic systems where they influence many other biogeochemical cycles. In oxic waters with circumneutral pH, the produced Fe(ii) reaches nanomolar concentrations and serves as a nutrient, whereas in acidic waters, freshwater and marine sediments, which are rich in Fe(ii), the photochemically formed Fe(ii) can reach concentrations of up to 100 micromolar and be used as additional electron donor for acidophilic aerobic, microaerophilic, phototrophic and, if nitrate is present, for nitrate-reducing Fe(ii)-oxidizing bacteria. Therefore, Fe(iii) photoreduction may not only control the primary productivity in the oceans but has a tremendous impact on Fe cycling in the littoral zone of freshwater and marine environments. In this review, we summarize photochemical reactions involving Fe, discuss the role of ROS in Fe cycling, and highlight the importance of photoreductive processes in the environment.


Assuntos
Ferro , Nitratos , Fotoquímica , Bactérias , Compostos Férricos , Compostos Ferrosos , Água Doce , Oxirredução
6.
Environ Sci Technol ; 54(2): 862-869, 2020 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-31886652

RESUMO

Iron(III) (Fe(III)) photoreduction plays an important role in Fe cycling and Fe(II) bioavailability in the upper ocean. Although well described for water columns, it is currently unknown to what extent light impacts the production of dissolved Fe(II) (Fe2+) in aquatic sediments. We performed high-resolution voltammetric microsensor measurements and demonstrated light-induced Fe2+ release in freshwater sediments from Lake Constance. Fe2+ concentrations increased up to 40 µM in the top 3 mm of the sediment during illumination in the visible range of light (400-700 nm), even in the presence of oxygen (100-280 µM). The Fe2+ release was strongly dependent on the organic matter content of the sediment. A lack of photoreduced Fe2+ was measured in sediments with concentrations of organic carbon <6 mg L-1. The simultaneous presence of sedimentary Fe(III) photoreduction besides microbial and abiotic Fe2+ oxidation by oxygen suggests an active Fe redox cycling in the oxic and photic zone of aquatic sediments. Here, we provide evidence for a relevant contribution of Fe(III) photoreduction to the bio-geochemical Fe redox cycle in aquatic freshwater sediments.


Assuntos
Compostos Férricos , Sedimentos Geológicos , Carbono , Ferro , Lagos , Oxirredução
7.
Environ Sci Technol ; 53(14): 8197-8204, 2019 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-31203607

RESUMO

Neutrophilic microbial aerobic oxidation of ferrous iron (Fe(II)) is restricted to pH-circumneutral environments characterized by low oxygen where microaerophilic Fe(II)-oxidizing microorganisms successfully compete with abiotic Fe(II) oxidation. However, accumulation of ferric (bio)minerals increases competition by stimulating abiotic surface-catalyzed heterogeneous Fe(II) oxidation. Here, we present an experimental approach that allows quantification of microbial and abiotic contribution to Fe(II) oxidation in the presence or initial absence of ferric (bio)minerals. We found that at 20 µM O2 and the initial absence of Fe(III) minerals, an iron(II)-oxidizing enrichment culture (99.6% similarity to Sideroxydans spp.) contributed 40% to the overall Fe(II) oxidation within approximately 26 h and oxidized up to 3.6 × 10-15 mol Fe(II) cell-1 h-1. Optimum O2 concentrations at which enzymatic Fe(II) oxidation can compete with abiotic Fe(II) oxidation ranged from 5 to 20 µM. Lower O2 levels limited biotic Fe(II) oxidation, while at higher O2 levels abiotic Fe(II) oxidation dominated. The presence of ferric (bio)minerals induced surface-catalytic heterogeneous abiotic Fe(II) oxidation and reduced the microbial contribution to Fe(II) oxidation from 40% to 10% at 10 µM O2. The obtained results will help to better assess the impact of microaerophilic Fe(II) oxidation on the biogeochemical iron cycle in a variety of environmental natural and anthropogenic settings.


Assuntos
Compostos Ferrosos , Ferro , Compostos Férricos , Minerais , Oxirredução , Oxigênio
8.
Appl Environ Microbiol ; 84(2)2018 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-29101195

RESUMO

Nitrate-reducing iron(II)-oxidizing bacteria have been known for approximately 20 years. There has been much debate as to what extent the reduction of nitrate and the oxidation of ferrous iron are coupled via enzymatic pathways or via abiotic processes induced by nitrite formed by heterotrophic denitrification. The aim of the present study was to assess the coupling of nitrate reduction and iron(II) oxidation by monitoring changes in substrate concentrations, as well as in the activity of nitrate-reducing bacteria in natural littoral freshwater sediment, in response to stimulation with nitrate and iron(II). In substrate-amended microcosms, we found that the biotic oxidation of ferrous iron depended on the simultaneous microbial reduction of nitrate. Additionally, the abiotic oxidation of ferrous iron by nitrite in sterilized sediment was not fast enough to explain the iron oxidation rates observed in microbially active sediment. Furthermore, the expression levels of genes coding for enzymes crucial for nitrate reduction were in some setups stimulated by the presence of ferrous iron. These results indicate that there is a direct influence of ferrous iron on bacterial denitrification and support the hypothesis that microbial nitrate reduction is stimulated by biotic iron(II) oxidation.IMPORTANCE The coupling of nitrate reduction and Fe(II) oxidation affects the environment at a local scale, e.g., by changing nutrient or heavy metal mobility in soils due to the formation of Fe(III) minerals, as well as at a global scale, e.g., by the formation of the primary greenhouse gas nitrous oxide. Although the coupling of nitrate reduction and Fe(II) oxidation was reported 20 years ago and has been studied intensively since then, the underlying mechanisms still remain unknown. One of the main knowledge gaps is the extent of enzymatic Fe(II) oxidation coupled to nitrate reduction, which has frequently been questioned in the literature. In the present study, we provide evidence for microbially mediated nitrate-reducing Fe(II) oxidation in freshwater sediments. This evidence is based on the rates of nitrate reduction and Fe(II) oxidation determined in microcosm incubations and on the effect of iron on the expression of genes required for denitrification.


Assuntos
Bactérias/metabolismo , Compostos Ferrosos/metabolismo , Água Doce/microbiologia , Sedimentos Geológicos/microbiologia , Nitratos/metabolismo , Ciclo do Nitrogênio/fisiologia , Anaerobiose , Bactérias/genética , Desnitrificação , Compostos Férricos/metabolismo , Processos Heterotróficos , Ferro/metabolismo , Minerais/metabolismo , Nitritos/metabolismo , Oxirredução , Acoplamento Oxidativo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...