Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nucl Med Biol ; 130-131: 108893, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38422918

RESUMO

Atherosclerosis is a chronic inflammatory disease and the leading cause of morbidity and mortality worldwide. CC motif chemokine ligand 2 and its corresponding cognate receptor 2 (CCL2/CCR2) signaling has been implicated in regulating monocyte recruitment and macrophage polarization during inflammatory responses that plays a pivotal role in atherosclerosis initiation and progression. In this study, we report the design and synthesis of a novel 18F radiolabeled small molecule radiotracer for CCR2-targeted positron emission tomography (PET) imaging in atherosclerosis. The binding affinity of this radiotracer to CCR2 was evaluated via in vitro binding assay using CCR2+ membrane and cells. Ex vivo biodistribution was carried out in wild type mice to assess radiotracer pharmacokinetics. CCR2 targeted PET imaging of plaques was performed in two murine atherosclerotic models. The sensitive detection of atherosclerotic lesions highlighted the potential of this radiotracer for CCR2 targeted PET and warranted further optimization.


Assuntos
Aterosclerose , Camundongos , Animais , Distribuição Tecidual , Aterosclerose/metabolismo , Tomografia por Emissão de Pósitrons/métodos , Monócitos , Compostos Radiofarmacêuticos/farmacocinética , Camundongos Endogâmicos C57BL
2.
Nat Commun ; 12(1): 5255, 2021 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-34489438

RESUMO

Monocytes are part of the mononuclear phagocytic system. Monocytes play a central role during inflammatory conditions and a better understanding of their dynamics might open therapeutic opportunities. In the present study, we focused on the characterization and impact of monocytes on brown adipose tissue (BAT) functions during tissue remodeling. Single-cell RNA sequencing analysis of BAT immune cells uncovered a large diversity in monocyte and macrophage populations. Fate-mapping experiments demonstrated that the BAT macrophage pool requires constant replenishment from monocytes. Using a genetic model of BAT expansion, we found that brown fat monocyte numbers were selectively increased in this scenario. This observation was confirmed using a CCR2-binding radiotracer and positron emission tomography. Importantly, in line with their tissue recruitment, blood monocyte counts were decreased while bone marrow hematopoiesis was not affected. Monocyte depletion prevented brown adipose tissue expansion and altered its architecture. Podoplanin engagement is strictly required for BAT expansion. Together, these data redefine the diversity of immune cells in the BAT and emphasize the role of monocyte recruitment for tissue remodeling.


Assuntos
Tecido Adiposo Marrom/citologia , Monócitos/fisiologia , Adiponectina/genética , Tecido Adiposo Marrom/fisiologia , Animais , Diferenciação Celular/genética , Contagem de Leucócitos , Macrófagos/citologia , Macrófagos/fisiologia , Glicoproteínas de Membrana/metabolismo , Camundongos Transgênicos , Monócitos/citologia , Tomografia por Emissão de Pósitrons , Receptores CCR2/genética , Receptores CCR2/metabolismo
3.
Nanomedicine ; 36: 102416, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34147662

RESUMO

The development of atherosclerosis therapy is hampered by the lack of molecular imaging tools to identify the relevant biomarkers and determine the dynamic variation in vivo. Here, we show that a chemokine receptor 2 (CCR2) targeted gold nanocluster conjugated with extracellular loop 1 inverso peptide (AuNC-ECL1i) determines the initiation, progression and regression of atherosclerosis in apolipoprotein E knock-out (ApoE-/-) mouse models. The CCR2 targeted 64Cu-AuNC-ECL1i reveals sensitive detection of early atherosclerotic lesions and progression of plaques in ApoE-/- mice. CCR2 targeting specificity was confirmed by the competitive receptor blocking studies. In a mouse model of aortic arch transplantation, 64Cu-AuNC-ECL1i accurately detects the regression of plaques. Human atherosclerotic tissues show high expression of CCR2 related to the status of the disease. This study confirms CCR2 as a useful marker for atherosclerosis and points to the potential of 64Cu-AuNC-ECL1i as a targeted molecular imaging probe for future clinical translation.


Assuntos
Aterosclerose , Meios de Contraste , Sistemas de Liberação de Medicamentos , Ouro , Nanopartículas Metálicas , Placa Aterosclerótica , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Animais , Aterosclerose/diagnóstico por imagem , Aterosclerose/genética , Aterosclerose/metabolismo , Meios de Contraste/química , Meios de Contraste/farmacocinética , Meios de Contraste/farmacologia , Modelos Animais de Doenças , Ouro/química , Ouro/farmacocinética , Ouro/farmacologia , Nanopartículas Metálicas/química , Nanopartículas Metálicas/uso terapêutico , Camundongos , Camundongos Knockout para ApoE , Placa Aterosclerótica/diagnóstico por imagem , Placa Aterosclerótica/genética , Placa Aterosclerótica/metabolismo
4.
Mol Pharm ; 18(3): 1386-1396, 2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33591187

RESUMO

Chemokines and chemokine receptors play an important role in the initiation and progression of atherosclerosis by mediating the trafficking of inflammatory cells. Chemokine receptor 5 (CCR5) has major implications in promoting the development of plaques to advanced stage and related vulnerability. CCR5 antagonist has demonstrated the effective inhibition of atherosclerotic progression in mice, making it a potential biomarker for atherosclerosis management. To accurately determine CCR5 in vivo, we synthesized CCR5 targeted Comb nanoparticles through a modular design and construction strategy with control over the physiochemical properties and functionalization of CCR5 targeting peptide d-Ala-peptide T-amide (DAPTA-Comb). In vivo pharmacokinetic evaluation through 64Cu radiolabeling showed extended blood circulation of 64Cu-DAPTA-Combs conjugated with 10%, 25%, and 40% DAPTA. The different organ distribution profiles of the three nanoparticles demonstrated the effect of DAPTA on not only physicochemical properties but also targeting efficiency. In vivo positron emission tomography/computed tomography (PET/CT) imaging in an apolipoprotein E knockout mouse atherosclerosis model (ApoE-/-) showed that the three 64Cu-DAPTA-Combs could sensitively and specifically detect CCR5 along the progression of atherosclerotic lesions. In an ApoE-encoding adenoviral vector (AAV) induced plaque regression ApoE-/- mouse model, decreased monocyte recruitment, CD68+ macrophages, CCR5 expression, and plaque size were all associated with reduced PET signals, which not only further confirmed the targeting efficiency of 64Cu-DAPTA-Combs but also highlighted the potential of these targeted nanoparticles for atherosclerosis imaging. Moreover, the up-regulation of CCR5 and colocalization with CD68+ macrophages in the necrotic core of ex vivo human plaque specimens warrant further investigation for atherosclerosis prognosis.


Assuntos
Aterosclerose/diagnóstico por imagem , Aterosclerose/metabolismo , Nanopartículas/administração & dosagem , Receptores CCR5/metabolismo , Alanina/metabolismo , Animais , Apolipoproteínas E/metabolismo , Quimiocinas/metabolismo , Radioisótopos de Cobre/metabolismo , Modelos Animais de Doenças , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Placa Aterosclerótica/diagnóstico por imagem , Placa Aterosclerótica/metabolismo , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada/métodos , Compostos Radiofarmacêuticos/metabolismo
5.
J Nucl Med ; 62(1): 111-114, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32444372

RESUMO

Proinflammatory macrophages are important mediators of inflammation after myocardial infarction and of allograft injury after heart transplantation. The aim of this study was to image the recruitment of proinflammatory chemokine receptor 2-positive (CCR2+) cells in multiple heart injury models. Methods:64Cu-DOTA-extracellular loop 1 inverso (ECL1i) PET was used to image CCR2+ monocytes and macrophages in a heart transplantation mouse model. Flow cytometry was performed to characterize CCR2+ cells. Autoradiography on a human heart specimen was conducted to confirm binding specificity. 64Cu- and 68Ga-DOTA-ECL1i were compared in an ischemia-reperfusion injury mouse model. Results:64Cu-DOTA-ECL1i showed sensitive and specific detection of CCR2+ cells in all tested mouse models, with efficacy comparable to that of 68Ga-DOTA-ECL1i. Flow cytometry demonstrated specific expression of CCR2 on monocytes and macrophages. The tracer binds to human CCR2. Conclusion: This work establishes the utility of 64Cu-DOTA-ECL1i to image CCR2+ monocytes and macrophages in mouse models and provides the requisite preclinical information to translate the targeted clinical-grade CCR2 imaging probe for clinical investigation of heart diseases.


Assuntos
Traumatismos Cardíacos/diagnóstico por imagem , Traumatismos Cardíacos/metabolismo , Monócitos/metabolismo , Femprocumona/metabolismo , Tomografia por Emissão de Pósitrons , Receptores CCR2/metabolismo , Animais , Marcação por Isótopo , Camundongos , Camundongos Endogâmicos C57BL
6.
Am J Respir Crit Care Med ; 203(1): 78-89, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-32673071

RESUMO

Rationale: Idiopathic pulmonary fibrosis (IPF) is a progressive inflammatory lung disease without effective molecular markers of disease activity or treatment responses. Monocyte and interstitial macrophages that express the C-C motif CCR2 (chemokine receptor 2) are active in IPF and central to fibrosis.Objectives: To phenotype patients with IPF for potential targeted therapy, we developed 64Cu-DOTA-ECL1i, a radiotracer to noninvasively track CCR2+ monocytes and macrophages using positron emission tomography (PET).Methods: CCR2+ cells were investigated in mice with bleomycin- or radiation-induced fibrosis and in human subjects with IPF. The CCR2+ cell populations were localized relative to fibrotic regions in lung tissue and characterized using immunolocalization, single-cell mass cytometry, and Ccr2 RNA in situ hybridization and then correlated with parallel quantitation of lung uptake by 64Cu-DOTA-ECL1i PET.Measurements and Main Results: Mouse models established that increased 64Cu-DOTA-ECL1i PET uptake in the lung correlates with CCR2+ cell infiltration associated with fibrosis (n = 72). As therapeutic models, the inhibition of fibrosis by IL-1ß blockade (n = 19) or antifibrotic pirfenidone (n = 18) reduced CCR2+ macrophage accumulation and uptake of the radiotracer in mouse lungs. In lung tissues from patients with IPF, CCR2+ cells concentrated in perifibrotic regions and correlated with radiotracer localization (n = 21). Human imaging revealed little lung uptake in healthy volunteers (n = 7), whereas subjects with IPF (n = 4) exhibited intensive signals in fibrotic zones.Conclusions: These findings support a role for imaging CCR2+ cells within the fibrogenic niche in IPF to provide a molecular target for personalized therapy and monitoring.Clinical trial registered with www.clinicaltrials.gov (NCT03492762).


Assuntos
Biomarcadores/química , Fibrose Pulmonar Idiopática/fisiopatologia , Pulmão/diagnóstico por imagem , Pulmão/fisiopatologia , Macrófagos/fisiologia , Monócitos/fisiologia , Receptores CCR2/química , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Modelos Animais de Doenças , Feminino , Humanos , Masculino , Camundongos , Pessoa de Meia-Idade , Imagem Molecular , Tomografia por Emissão de Pósitrons
7.
Mol Pharm ; 16(9): 3996-4006, 2019 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-31369274

RESUMO

Folate receptor α (FRα) is a well-studied tumor biomarker highly expressed in many epithelial tumors such as breast, ovarian, and lung cancers. Mirvetuximab soravtansine (IMGN853) is the antibody-drug conjugate of FRα-binding humanized monoclonal antibody M9346A and cytotoxic maytansinoid drug DM4. IMGN853 is currently being evaluated in multiple clinical trials, in which the immunohistochemical evaluation of an archival tumor or biopsy specimen is used for patient screening. However, limited tissue collection may lead to inaccurate diagnosis due to tumor heterogeneity. Herein, we developed a zirconium-89 (89Zr)-radiolabeled M9346A (89Zr-M9346A) as an immuno-positron emission tomography (immuno-PET) radiotracer to evaluate FRα expression in triple-negative breast cancer (TNBC) patients, providing a novel means to guide intervention with therapeutic IMGN853. In this study, we verified the binding specificity and immunoreactivity of 89Zr-M9346A by in vitro studies in FRαhigh cells (HeLa) and FRαlow cells (OVCAR-3). In vivo PET/computed tomography (PET/CT) imaging in HeLa xenografts and TNBC patient-derived xenograft (PDX) mouse models with various levels of FRα expression demonstrated its targeting specificity and sensitivity. Following PET imaging, the treatment efficiencies of IMGN853, pemetrexed, IMGN853 + pemetrexed, paclitaxel, and saline were assessed in FRαhigh and FRαlow TNBC PDX models. The correlation between 89Zr-M9346A tumor uptake and treatment response using IMGN853 in FRαhigh TNBC PDX model suggested the potential of 89Zr-M9346A PET as a noninvasive tool to prescreen patients based on the in vivo PET imaging for IMGN853-targeted treatment.


Assuntos
Anticorpos Monoclonais Humanizados/farmacocinética , Anticorpos Monoclonais Humanizados/uso terapêutico , Receptor 1 de Folato/imunologia , Receptor 1 de Folato/metabolismo , Imunoconjugados/farmacocinética , Imunoconjugados/uso terapêutico , Maitansina/análogos & derivados , Radioisótopos/farmacocinética , Neoplasias de Mama Triplo Negativas/diagnóstico por imagem , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Zircônio/farmacocinética , Animais , Anticorpos Monoclonais Humanizados/química , Antineoplásicos Fitogênicos/química , Quimioterapia Combinada , Feminino , Células HeLa , Humanos , Imunoconjugados/química , Masculino , Maitansina/química , Maitansina/farmacocinética , Maitansina/uso terapêutico , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos NOD , Camundongos Nus , Camundongos SCID , Terapia de Alvo Molecular/métodos , Paclitaxel/uso terapêutico , Pemetrexede/uso terapêutico , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada/métodos , Radioisótopos/química , Distribuição Tecidual , Resultado do Tratamento , Neoplasias de Mama Triplo Negativas/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto , Zircônio/química
8.
ACS Appl Mater Interfaces ; 11(22): 19669-19678, 2019 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-31074257

RESUMO

Nanoparticles have been widely used for preclinical cancer imaging. However, their successful clinical translation is largely hampered by potential toxicity, unsatisfactory detection of malignancy at early stages, inaccurate diagnosis of tumor biomarkers, and histology for imaging-guided treatment. Herein, a targeted copper nanocluster (CuNC) is reported with high potential to address these challenges for future translation. Its ultrasmall structure enables efficient renal/bowel clearance, minimized off-target effects in nontargeted organs, and low nonspecific tumor retention. The pH-dependent in vivo dissolution of CuNCs affords minimal toxicity and potentially selective drug delivery to tumors. The intrinsic radiolabeling through the direct addition of 64Cu to CuNC (64Cu-CuNCs-FC131) synthesis offers high specific activity for sensitive and accurate detection of CXCR4 via FC131-directed targeting in novel triple negative breast cancer (TNBC) patient-derived xenograft mouse models and human TNBC tissues. In summary, this study not only reveals the potential of CXCR4-targeted 64Cu-CuNCs for TNBC imaging in clinical settings, but also provides a useful strategy to design and assess the translational potential of nanoparticles for cancer theranostics.


Assuntos
Neoplasias da Mama/diagnóstico por imagem , Cobre/química , Portadores de Fármacos/química , Nanopartículas/química , Animais , Cobre/efeitos adversos , Radioisótopos de Cobre/química , Feminino , Humanos , Camundongos , Nanopartículas/efeitos adversos , Peptídeos Cíclicos/química , Tomografia por Emissão de Pósitrons , Receptores CXCR4/metabolismo , Neoplasias de Mama Triplo Negativas/diagnóstico por imagem
9.
ACS Appl Mater Interfaces ; 11(17): 15316-15321, 2019 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-30969098

RESUMO

Nanoparticles have been assessed in preclinical models of atherosclerosis for detection of plaque complexity and treatment. However, their successful clinical translation has been hampered by less than satisfactory plaque detection and lack of a general strategy for assessing the translational potential of nanoparticles. Herein, nanoparticles based on comb-co-polymer assemblies were synthesized through a modular construction approach with precise control over the conjugation of multiple functional building blocks for in vivo evaluation. This high level of design control also allows physicochemical properties to be varied in a controllable fashion. Through conjugation of c-atrial natriuretic factor (CANF) peptide and radiolabeling with 64Cu, the 64Cu-CANF-comb nanoparticle was assessed for plaque imaging by targeting natriuretic peptide clearance receptor (NPRC) in a double-injury atherosclerosis model in rabbits. The prolonged blood circulation and enhanced binding capacity of 64Cu-CANF-comb nanoparticles provided sensitive and specific imaging of NPRC overexpressed in atherosclerotic lesions by positron emission tomography at intervals during the progression of the disease. Ex vivo tissue validation using autoradiography and immunostaining on human carotid endarterectomy specimens demonstrated specific binding of 64Cu-CANF-comb to human NPRC receptors. Taken together, this study not only shows the potential of NPRC-targeted 64Cu-CANF-comb nanoparticles for increased sensitivity to an epitope that increases during atherosclerosis plaque development but also provides a useful strategy for the general design and assessment of the translational potential of nanoparticles in cardiovascular imaging.


Assuntos
Nanopartículas/química , Tomografia por Emissão de Pósitrons , Animais , Aterosclerose/diagnóstico por imagem , Aterosclerose/patologia , Fator Natriurético Atrial/química , Fator Natriurético Atrial/metabolismo , Radioisótopos de Cobre/química , Modelos Animais de Doenças , Artéria Femoral/diagnóstico por imagem , Humanos , Placa Aterosclerótica/diagnóstico por imagem , Placa Aterosclerótica/patologia , Coelhos , Compostos Radiofarmacêuticos/química , Receptores do Fator Natriurético Atrial/química , Receptores do Fator Natriurético Atrial/metabolismo
10.
J Clin Invest ; 128(7): 2833-2847, 2018 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-29781811

RESUMO

Ischemia-reperfusion injury, a form of sterile inflammation, is the leading risk factor for both short-term mortality following pulmonary transplantation and chronic lung allograft dysfunction. While it is well recognized that neutrophils are critical mediators of acute lung injury, processes that guide their entry into pulmonary tissue are not well understood. Here, we found that CCR2+ classical monocytes are necessary and sufficient for mediating extravasation of neutrophils into pulmonary tissue during ischemia-reperfusion injury following hilar clamping or lung transplantation. The classical monocytes were mobilized from the host spleen, and splenectomy attenuated the recruitment of classical monocytes as well as the entry of neutrophils into injured lung tissue, which was associated with improved graft function. Neutrophil extravasation was mediated by MyD88-dependent IL-1ß production by graft-infiltrating classical monocytes, which downregulated the expression of the tight junction-associated protein ZO-2 in pulmonary vascular endothelial cells. Thus, we have uncovered a crucial role for classical monocytes, mobilized from the spleen, in mediating neutrophil extravasation, with potential implications for targeting of recipient classical monocytes to ameliorate pulmonary ischemia-reperfusion injury in the clinic.


Assuntos
Interleucina-1beta/imunologia , Lesão Pulmonar/imunologia , Monócitos/imunologia , Traumatismo por Reperfusão/imunologia , Animais , Movimento Celular/imunologia , Humanos , Lesão Pulmonar/etiologia , Lesão Pulmonar/patologia , Transplante de Pulmão/efeitos adversos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Knockout , Camundongos Transgênicos , Modelos Imunológicos , Monócitos/patologia , Fator 88 de Diferenciação Mieloide/imunologia , Neutrófilos/imunologia , Neutrófilos/patologia , Traumatismo por Reperfusão/etiologia , Traumatismo por Reperfusão/patologia , Baço/imunologia , Baço/patologia , Proteína da Zônula de Oclusão-2/imunologia
11.
Arterioscler Thromb Vasc Biol ; 38(5): 1030-1036, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29567678

RESUMO

OBJECTIVE: Aortic arch transplants have advanced our understanding of processes that contribute to progression and regression of atherosclerotic plaques. To characterize the dynamic behavior of monocytes and macrophages in atherosclerotic plaques over time, we developed a new model of cervical aortic arch transplantation in mice that is amenable to intravital imaging. APPROACH AND RESULTS: Vascularized aortic arch grafts were transplanted heterotropically to the right carotid arteries of recipient mice using microsurgical suture techniques. To image immune cells in atherosclerotic lesions during regression, plaque-bearing aortic arch grafts from B6 ApoE-deficient donors were transplanted into syngeneic CX3CR1 GFP reporter mice. Grafts were evaluated histologically, and monocytic cells in atherosclerotic plaques in ApoE-deficient grafts were imaged intravitally by 2-photon microscopy in serial fashion. In complementary experiments, CCR2+ cells in plaques were serially imaged by positron emission tomography using specific molecular probes. Plaques in ApoE-deficient grafts underwent regression after transplantation into normolipidemic hosts. Intravital imaging revealed clusters of largely immotile CX3CR1+ monocytes/macrophages in regressing plaques that had been recruited from the periphery. We observed a progressive decrease in CX3CR1+ monocytic cells in regressing plaques and a decrease in CCR2+ positron emission tomography signal during 4 months. CONCLUSIONS: Cervical transplantation of atherosclerotic mouse aortic arches represents a novel experimental tool to investigate cellular mechanisms that contribute to the remodeling of atherosclerotic plaques.


Assuntos
Aorta Torácica/diagnóstico por imagem , Aorta Torácica/patologia , Doenças da Aorta/diagnóstico por imagem , Doenças da Aorta/patologia , Aterosclerose/diagnóstico por imagem , Aterosclerose/patologia , Microscopia Intravital/métodos , Microscopia de Fluorescência por Excitação Multifotônica , Monócitos/patologia , Placa Aterosclerótica , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Animais , Aorta Torácica/metabolismo , Aorta Torácica/transplante , Doenças da Aorta/genética , Doenças da Aorta/metabolismo , Aterosclerose/genética , Aterosclerose/metabolismo , Receptor 1 de Quimiocina CX3C/genética , Modelos Animais de Doenças , Feminino , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Macrófagos/metabolismo , Macrófagos/patologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos CBA , Camundongos Knockout para ApoE , Monócitos/metabolismo , Receptores CCR2/metabolismo , Fatores de Tempo , Proteína Vermelha Fluorescente
12.
Radiology ; 283(3): 758-768, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28045644

RESUMO

Purpose To characterize a chemokine receptor type 2 (CCR2)-binding peptide adapted for use as a positron emission tomography (PET) radiotracer for noninvasive detection of lung inflammation in a mouse model of lung injury and in human tissues from subjects with lung disease. Materials and Methods The study was approved by institutional animal and human studies committees. Informed consent was obtained from patients. A 7-amino acid CCR2 binding peptide (extracellular loop 1 inverso [ECL1i]) was conjugated to tetraazacyclododecane tetraacetic acid (DOTA) and labeled with copper 64 (64Cu) or fluorescent dye. Lung inflammation was induced with intratracheal administration of lipopolysaccharide (LPS) in wild-type (n = 19) and CCR2-deficient (n = 4) mice, and these mice were compared with wild-type mice given control saline (n = 5) by using PET performed after intravenous injection of 64Cu-DOTA-ECL1i. Lung immune cells and those binding fluorescently labeled ECL1i in vivo were detected with flow cytometry. Lung inflammation in tissue from subjects with nondiseased lungs donated for lung transplantation (n = 11) and those with chronic obstructive pulmonary disease (COPD) who were undergoing lung transplantation (n = 16) was evaluated for CCR2 with immunostaining and autoradiography (n = 6, COPD) with 64Cu-DOTA-ECL1i. Groups were compared with analysis of variance, the Mann-Whitney U test, or the t test. Results Signal on PET images obtained in mouse lungs after injury with LPS was significantly greater than that in the saline control group (mean = 4.43% of injected dose [ID] per gram of tissue vs 0.99% of injected dose per gram of tissue; P < .001). PET signal was significantly diminished with blocking studies using nonradiolabeled ECL1i in excess (mean = 0.63% ID per gram of tissue; P < .001) and in CCR2-deficient mice (mean = 0.39% ID per gram of tissue; P < .001). The ECL1i signal was associated with an elevated level of mouse lung monocytes. COPD lung tissue displayed significantly elevated CCR2 levels compared with nondiseased tissue (median = 12.8% vs 1.2% cells per sample; P = .002), which was detected with 64Cu-DOTA-ECL1i by using autoradiography. Conclusion 64Cu-DOTA-ECL1i is a promising tool for PET-based detection of CCR2-directed inflammation in an animal model and in human tissues as a step toward clinical translation. © RSNA, 2017 Online supplemental material is available for this article.


Assuntos
Pneumonia/diagnóstico por imagem , Pneumonia/imunologia , Tomografia por Emissão de Pósitrons , Receptores CCR2/análise , Animais , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Tomografia por Emissão de Pósitrons/métodos
13.
Pharm Res ; 33(10): 2400-10, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27286872

RESUMO

PURPOSE: To assess the physicochemical properties, pharmacokinetic profiles, and in vivo positron emission tomography (PET) imaging of natriuretic peptide clearance receptors (NPRC) expressed on atherosclerotic plaque of a series of targeted, polymeric nanoparticles. METHODS: To control their structure, non-targeted and targeted polymeric (comb) nanoparticles, conjugated with various amounts of c-atrial natriuretic peptide (CANF, 0, 5, 10 and 25%), were synthesized by controlled and modular chemistry. In vivo pharmacokinetic evaluation of these nanoparticles was performed in wildtype (WT) C57BL/6 mice after (64)Cu radiolabeling. PET imaging was performed on an apolipoprotein E-deficient (ApoE(-/-)) mouse atherosclerosis model to assess the NPRC targeting efficiency. For comparison, an in vivo blood metabolism study was carried out in WT mice. RESULTS: All three (64)Cu-CANF-comb nanoparticles showed improved biodistribution profiles, including significantly reduced accumulation in both liver and spleen, compared to the non-targeted (64)Cu-comb. Of the three nanoparticles, the 25% (64)Cu-CANF-comb demonstrated the best NPRC targeting specificity and sensitivity in ApoE(-/-) mice. Metabolism studies showed that the radiolabeled CANF-comb was stable in blood up to 9 days. Histopathological analyses confirmed the up-regulation of NPRC along the progression of atherosclerosis. CONCLUSION: The 25% (64)Cu-CANF-comb demonstrated its potential as a PET imaging agent to detect atherosclerosis progression and status.


Assuntos
Aterosclerose/metabolismo , Fator Natriurético Atrial/metabolismo , Radioisótopos de Cobre/metabolismo , Nanopartículas/metabolismo , Polímeros/metabolismo , Tomografia por Emissão de Pósitrons/métodos , Animais , Aterosclerose/diagnóstico por imagem , Fator Natriurético Atrial/administração & dosagem , Fator Natriurético Atrial/química , Radioisótopos de Cobre/administração & dosagem , Radioisótopos de Cobre/química , Sistemas de Liberação de Medicamentos/métodos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Nanopartículas/administração & dosagem , Nanopartículas/química , Polímeros/administração & dosagem , Polímeros/química , Distribuição Tecidual/efeitos dos fármacos , Distribuição Tecidual/fisiologia
14.
J Nucl Med ; 57(7): 1124-9, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-26795285

RESUMO

UNLABELLED: Atherosclerosis is inherently an inflammatory process that is strongly affected by the chemokine-chemokine receptor axes regulating the trafficking of inflammatory cells at all stages of the disease. Of the chemokine receptor family, some specifically upregulated on macrophages play a critical role in plaque development and may have the potential to track plaque progression. However, the diagnostic potential of these chemokine receptors has not been fully realized. On the basis of our previous work using a broad-spectrum peptide antagonist imaging 8 chemokine receptors together, the purpose of this study was to develop a targeted nanoparticle for sensitive and specific detection of these chemokine receptors in both a mouse vascular injury model and a spontaneously developed mouse atherosclerosis model. METHODS: The viral macrophage inflammatory protein-II (vMIP-II) was conjugated to a biocompatible poly(methyl methacrylate)-core/polyethylene glycol-shell amphiphilic comblike nanoparticle through controlled conjugation and polymerization before radiolabeling with (64)Cu for PET imaging in an apolipoprotein E-deficient (ApoE(-/-)) mouse vascular injury model and a spontaneous ApoE(-/-) mouse atherosclerosis model. Histology, immunohistochemistry, and real-time reverse transcription polymerase chain reaction were performed to assess the plaque progression and upregulation of chemokine receptors. RESULTS: The chemokine receptor-targeted (64)Cu-vMIP-II-comb showed extended blood retention and improved biodistribution. PET imaging showed specific tracer accumulation at plaques in ApoE(-/-) mice, confirmed by competitive receptor blocking studies and assessment in wild-type mice. Histopathologic characterization showed the progression of plaque including size and macrophage population, corresponding to the elevated concentration of chemokine receptors and more importantly increased PET signals. CONCLUSION: This work provides a useful nanoplatform for sensitive and specific detection of chemokine receptors to assess plaque progression in mouse atherosclerosis models.


Assuntos
Aterosclerose/diagnóstico por imagem , Inflamação/diagnóstico por imagem , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada/métodos , Receptores de Quimiocinas/antagonistas & inibidores , Animais , Apolipoproteínas E/genética , Aterosclerose/genética , Aterosclerose/patologia , Quimiocinas/química , Quimiocinas/farmacocinética , Radioisótopos de Cobre , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Nanopartículas , Placa Aterosclerótica/diagnóstico por imagem , Placa Aterosclerótica/patologia , Compostos Radiofarmacêuticos/síntese química , Compostos Radiofarmacêuticos/farmacocinética , Distribuição Tecidual
15.
Curr Pharm Des ; 21(36): 5267-76, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26369676

RESUMO

Atherosclerosis is a systemic disease characterized by the development of multifocal plaque lesions within vessel walls and extending into the vascular lumen. The disease takes decades to develop symptomatic lesions, affording opportunities for accurate detection of plaque progression, analysis of risk factors responsible for clinical events, and planning personalized treatment. Of the available molecular imaging modalities, radionuclidebased imaging strategies have been favored due to their sensitivity, quantitative detection and pathways for translational research. This review summarizes recent advances of radiolabeled small molecules, peptides, antibodies and nanoparticles for atherosclerotic plaque imaging during disease progression.


Assuntos
Aterosclerose/diagnóstico por imagem , Placa Aterosclerótica/diagnóstico por imagem , Animais , Aterosclerose/patologia , Progressão da Doença , Humanos , Imagem Molecular/métodos , Nanopartículas/administração & dosagem , Placa Aterosclerótica/patologia , Cintilografia , Fatores de Risco , Sensibilidade e Especificidade , Pesquisa Translacional Biomédica
16.
ACS Nano ; 8(5): 4385-94, 2014 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-24766522

RESUMO

With Au nanocages as an example, we recently demonstrated that radioactive (198)Au could be incorporated into the crystal lattice of Au nanostructures for simple and reliable quantification of their in vivo biodistribution by measuring the γ radiation from (198)Au decay and for optical imaging by detecting the Cerenkov radiation. Here we extend the capability of this strategy to synthesize radioactive (198)Au nanostructures with a similar size but different shapes and then compare their biodistribution, tumor uptake, and intratumoral distribution using a murine EMT6 breast cancer model. Specifically, we investigated Au nanospheres, nanodisks, nanorods, and cubic nanocages. After PEGylation, an aqueous suspension of the radioactive Au nanostructures was injected into a tumor-bearing mouse intravenously, and their biodistribution was measured from the γ radiation while their tumor uptake was directly imaged using the Cerenkov radiation. Significantly higher tumor uptake was observed for the Au nanospheres and nanodisks relative to the Au nanorods and nanocages at 24 h postinjection. Furthermore, autoradiographic imaging was performed on thin slices of the tumor after excision to resolve the intratumoral distributions of the nanostructures. While both the Au nanospheres and nanodisks were only observed on the surfaces of the tumors, the Au nanorods and nanocages were distributed throughout the tumors.


Assuntos
Radioisótopos de Ouro/química , Nanopartículas Metálicas/química , Nanotecnologia/métodos , Animais , Linhagem Celular Tumoral , Feminino , Ouro/química , Neoplasias Mamárias Animais/patologia , Camundongos , Camundongos Endogâmicos BALB C , Microscopia Eletrônica de Transmissão , Nanosferas/química , Nanotubos/química , Técnicas Fotoacústicas , Polietilenoglicóis/química , Tomografia por Emissão de Pósitrons , Distribuição Tecidual , Tomografia Computadorizada por Raios X
17.
J Nucl Med ; 55(4): 629-34, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24591489

RESUMO

UNLABELLED: Inflammation plays important roles at all stages of atherosclerosis. Chemokine systems have major effects on the initiation and progression of atherosclerosis by controlling the trafficking of inflammatory cells in vivo through interaction with their receptors. Chemokine receptor 5 (CCR5) has been reported to be an active participant in the late stage of atherosclerosis and has the potential as a prognostic biomarker for plaque stability. However, its diagnostic potential has not yet been explored. The purpose of this study was to develop a targeted nanoparticle for sensitive and specific PET/CT imaging of the CCR5 receptor in an apolipoprotein E knock-out (ApoE(-/-)) mouse vascular injury model. METHODS: The D-Ala1-peptide T-amide (DAPTA) peptide was selected as a targeting ligand for the CCR5 receptor. Through controlled conjugation and polymerization, a biocompatible poly(methyl methacrylate)-core/polyethylene glycol-shell amphiphilic comblike nanoparticle was prepared and labeled with (64)Cu for CCR5 imaging in the ApoE(-/-) wire-injury model. Immunohistochemistry, histology, and real-time reverse transcription polymerase chain reaction (RT-PCR) were performed to assess the disease progression and upregulation of CCR5 receptor. RESULTS: The (64)Cu-DOTA-DAPTA tracer showed specific PET imaging of CCR5 in the ApoE(-/-) mice. The targeted (64)Cu-DOTA-DAPTA-comb nanoparticles showed extended blood signal and optimized biodistribution. The tracer uptake analysis showed significantly higher accumulations at the injury lesions than those acquired from the sham-operated sites. The competitive PET receptor blocking studies confirmed the CCR5 receptor-specific uptake. The assessment of (64)Cu-DOTA-DAPTA-comb in C57BL/6 mice and (64)Cu-DOTA-comb in ApoE(-/-) mice verified low nonspecific nanoparticle uptake. Histology, immunohistochemistry, and RT-PCR analyses verified the upregulation of CCR5 in the progressive atherosclerosis model. CONCLUSION: This work provides a nanoplatform for sensitive and specific detection of CCR5's physiologic functions in an animal atherosclerosis model.


Assuntos
Tomografia por Emissão de Pósitrons/métodos , Compostos Radiofarmacêuticos/administração & dosagem , Receptores CCR5/metabolismo , Tomografia Computadorizada de Emissão de Fóton Único/métodos , Doenças Vasculares/diagnóstico por imagem , Animais , Apolipoproteínas E/genética , Aterosclerose/diagnóstico por imagem , Ligação Competitiva , Radioisótopos de Cobre , Progressão da Doença , Sistemas de Liberação de Medicamentos , Imuno-Histoquímica , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Nanopartículas , Reação em Cadeia da Polimerase em Tempo Real , Distribuição Tecidual
18.
J Nucl Med ; 54(7): 1135-41, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23658218

RESUMO

UNLABELLED: Atherosclerosis is the pathophysiologic process behind lethal cardiovascular diseases. It is a chronic inflammatory progression. Chemokines can strongly affect the initiation and progression of atherosclerosis by controlling the trafficking of inflammatory cells in vivo through interaction with their receptors. Some chemokine receptors have been reported to play an important role in plaque development and stability. However, the diagnostic potential of chemokine receptors has not yet been explored. The purpose of this study was to develop a positron emitter-radiolabeled probe to image the upregulation of chemokine receptor in a wire-injury-accelerated apolipoprotein E knockout (ApoE(-/-)) mouse model of atherosclerosis. METHODS: A viral macrophage inflammatory protein II (vMIP-II) was used to image the upregulation of multiple chemokine receptors through conjugation with DOTA for (64)Cu radiolabeling and PET. Imaging studies were performed at 2 and 4 wk after injury in both wire-injured ApoE(-/-) and wild-type C57BL/6 mice. Competitive PET blocking studies with nonradiolabeled vMIP-II were performed to confirm the imaging specificity. Specific PET blocking with individual chemokine receptor antagonists was also performed to verify the upregulation of a particular chemokine receptor. In contrast, (18)F-FDG PET imaging was performed in both models to evaluate tracer uptake. Immunohistochemistry on the injury and sham tissues was performed to assess the upregulation of chemokine receptors. RESULTS: (15)O-CO PET showed decreased blood volume in the femoral artery after the injury. (64)Cu-DOTA-vMIP-II exhibited fast in vivo pharmacokinetics with major renal clearance. PET images showed specific accumulation around the injury site, with consistent expression during the study period. Quantitative analysis of tracer uptake at the injury lesion in the ApoE(-/-) model showed a 3-fold increase over the sham-operated site and the sites in the injured wild-type mouse. (18)F-FDG PET showed significantly less tracer accumulation than (64)Cu-DOTA-vMIP-II, with no difference observed between injury and sham sites. PET blocking studies identified chemokine receptor-mediated (64)Cu-DOTA-vMIP-II uptake and verified the presence of 8 chemokine receptors, and this finding was confirmed by immunohistochemistry. CONCLUSION: (64)Cu-DOTA-vMIP-II was proven a sensitive and useful PET imaging probe for the detection of 8 up-regulated chemokine receptors in a model of injury-accelerated atherosclerosis.


Assuntos
Aterosclerose/diagnóstico por imagem , Aterosclerose/metabolismo , Quimiocinas/farmacocinética , Imagem Molecular/métodos , Compostos Organometálicos/farmacocinética , Tomografia por Emissão de Pósitrons/métodos , Receptores de Quimiocinas/metabolismo , Animais , Biomarcadores/metabolismo , Artéria Femoral/diagnóstico por imagem , Artéria Femoral/lesões , Artéria Femoral/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Compostos Radiofarmacêuticos/farmacocinética , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
19.
ACS Nano ; 6(10): 8970-82, 2012 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-23043240

RESUMO

Nanoparticles with tunable pharmacokinetics are desirable for various biomedical applications. Poly(ethylene glycol) (PEG) is well-known to create "stealth" effects to stabilize and extend the blood circulation of nanoparticles. In this work, poly(carboxybetaine) (PCB), a new nonfouling polymer material, was incorporated as surface-grafted coatings, conjugated onto degradable shell cross-linked knedel-like nanoparticles (dSCKs) composed of poly(acrylic acid)-based shells and poly(lactic acid) cores, to compare the in vivo pharmacokinetics to their PEG-functionalized analogues. A series of five dSCKs was prepared from amphiphilic block copolymers, having different numbers and lengths of either PEG or PCB grafts, by supramolecular assembly in water followed by shell cross-linking, and then studied by a lactate assay to confirm their core hydrolytic degradabilities. Each dSCK was also conjugated with 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid macrocyclic chelators and tyramine moieties to provide for (64)Cu and/or radiohalogen labeling. The high specific activity of (64)Cu radiolabeling ensured nanogram administration of dSCKs for in vivo evaluation of their pharmacokinetics. Biodistribution studies demonstrated comparable in vivo pharmacokinetic profiles of PCB-grafted dSCKs to their PEG-conjugated counterparts. These results indicated that PCB-functionalized dSCKs have great potential as a theranostic platform for translational research.


Assuntos
Implantes Absorvíveis , Betaína/farmacocinética , Materiais Revestidos Biocompatíveis/farmacocinética , Nanopartículas/química , Polietilenoglicóis/farmacocinética , Ácidos Polimetacrílicos/farmacocinética , Animais , Betaína/síntese química , Materiais Revestidos Biocompatíveis/síntese química , Taxa de Depuração Metabólica , Camundongos , Camundongos Endogâmicos C57BL , Especificidade de Órgãos , Polietilenoglicóis/síntese química , Ácidos Polimetacrílicos/síntese química , Distribuição Tecidual
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...