Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
MicroPubl Biol ; 20222022.
Artigo em Inglês | MEDLINE | ID: mdl-36606081

RESUMO

Visualization of genomic loci with open chromatin state has been reported in mammalian tissue culture cells using a CRISPR/Cas9-based system that utilizes an EGFP-tagged endonuclease-deficient Cas9 protein (dCas9::EGFP) (Chen et al. 2013). Here, we adapted this approach for use in Caenorhabditis elegans . We generated a C. elegans strain that expresses the dCas9 protein fused to two nuclear-localized EGFP molecules (dCas9::NLS::2xEGFP::NLS) in an inducible manner. Using this strain, we report the visualization in live C. elegans embryos of two endogenous repetitive loci, rrn-4 and rrn-1 , from which 5S and 18S ribosomal RNAs are constitutively generated.

2.
G3 (Bethesda) ; 11(7)2021 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-33784383

RESUMO

Mitochondrial dynamics plays an important role in mitochondrial quality control and the adaptation of metabolic activity in response to environmental changes. The disruption of mitochondrial dynamics has detrimental consequences for mitochondrial and cellular homeostasis and leads to the activation of the mitochondrial unfolded protein response (UPRmt), a quality control mechanism that adjusts cellular metabolism and restores homeostasis. To identify genes involved in the induction of UPRmt in response to a block in mitochondrial fusion, we performed a genome-wide RNAi screen in Caenorhabditis elegans mutants lacking the gene fzo-1, which encodes the ortholog of mammalian Mitofusin, and identified 299 suppressors and 86 enhancers. Approximately 90% of these 385 genes are conserved in humans, and one-third of the conserved genes have been implicated in human disease. Furthermore, many have roles in developmental processes, which suggests that mitochondrial function and their response to stress are defined during development and maintained throughout life. Our dataset primarily contains mitochondrial enhancers and non-mitochondrial suppressors of UPRmt, indicating that the maintenance of mitochondrial homeostasis has evolved as a critical cellular function, which, when disrupted, can be compensated for by many different cellular processes. Analysis of the subsets "non-mitochondrial enhancers" and "mitochondrial suppressors" suggests that organellar contact sites, especially between the ER and mitochondria, are of importance for mitochondrial homeostasis. In addition, we identified several genes involved in IP3 signaling that modulate UPRmt in fzo-1 mutants and found a potential link between pre-mRNA splicing and UPRmt activation.


Assuntos
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Animais , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , GTP Fosfo-Hidrolases/genética , GTP Fosfo-Hidrolases/metabolismo , Dinâmica Mitocondrial/genética , Interferência de RNA , Resposta a Proteínas não Dobradas/genética
3.
Genes Dev ; 31(2): 209-222, 2017 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-28167500

RESUMO

Programmed cell death occurs in a highly reproducible manner during Caenorhabditis elegans development. We demonstrate that, during embryogenesis, miR-35 and miR-58 bantam family microRNAs (miRNAs) cooperate to prevent the precocious death of mothers of cells programmed to die by repressing the gene egl-1, which encodes a proapoptotic BH3-only protein. In addition, we present evidence that repression of egl-1 is dependent on binding sites for miR-35 and miR-58 family miRNAs within the egl-1 3' untranslated region (UTR), which affect both mRNA copy number and translation. Furthermore, using single-molecule RNA fluorescent in situ hybridization (smRNA FISH), we show that egl-1 is transcribed in the mother of a cell programmed to die and that miR-35 and miR-58 family miRNAs prevent this mother from dying by keeping the copy number of egl-1 mRNA below a critical threshold. Finally, miR-35 and miR-58 family miRNAs can also dampen the transcriptional boost of egl-1 that occurs specifically in a daughter cell that is programmed to die. We propose that miRNAs compensate for lineage-specific differences in egl-1 transcriptional activation, thus ensuring that EGL-1 activity reaches the threshold necessary to trigger death only in daughter cells that are programmed to die.


Assuntos
Apoptose/genética , Caenorhabditis elegans/crescimento & desenvolvimento , Caenorhabditis elegans/genética , MicroRNAs/metabolismo , Animais , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Linhagem da Célula , Embrião não Mamífero , Regulação da Expressão Gênica no Desenvolvimento , MicroRNAs/genética , Mutação , Fenótipo
4.
Genome Res ; 23(1): 181-94, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22990209

RESUMO

To analyze gene regulatory networks, the sequence-dependent DNA/RNA binding affinities of proteins and noncoding RNAs are crucial. Often, these are deduced from sets of sequences enriched in factor binding sites. Two classes of computational approaches exist. The first describe binding motifs by sequence patterns and search the patterns with highest statistical significance for enrichment. The second class uses the more powerful position weight matrices (PWMs). Instead of maximizing the statistical significance of enrichment, they maximize a likelihood. Here we present XXmotif (eXhaustive evaluation of matriX motifs), the first PWM-based motif discovery method that can optimize PWMs by directly minimizing their P-values of enrichment. Optimization requires computing millions of enrichment P-values for thousands of PWMs. For a given PWM, the enrichment P-value is calculated efficiently from the match P-values of all possible motif placements in the input sequences using order statistics. The approach can naturally combine P-values for motif enrichment, conservation, and localization. On ChIP-chip/seq, miRNA knock-down, and coexpression data sets from yeast and metazoans, XXmotif outperformed state-of-the-art tools, both in numbers of correctly identified motifs and in the quality of PWMs. In segmentation modules of D. melanogaster, we detect the known key regulators and several new motifs. In human core promoters, XXmotif reports most previously described and eight novel motifs sharply peaked around the transcription start site, among them an Initiator motif similar to the fly and yeast versions. XXmotif's sensitivity, reliability, and usability will help to leverage the quickly accumulating wealth of functional genomics data.


Assuntos
Elementos Facilitadores Genéticos , Matrizes de Pontuação de Posição Específica , Regiões Promotoras Genéticas , Análise de Sequência de DNA/métodos , Animais , Drosophila melanogaster/genética , Genoma Fúngico , Genoma Humano , Genoma de Inseto , Humanos , MicroRNAs/genética , Motivos de Nucleotídeos , Saccharomyces cerevisiae/genética , Sítio de Iniciação de Transcrição
5.
Nucleic Acids Res ; 40(Web Server issue): W104-9, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22693218

RESUMO

The discovery of regulatory motifs enriched in sets of DNA or RNA sequences is fundamental to the analysis of a great variety of functional genomics experiments. These motifs usually represent binding sites of proteins or non-coding RNAs, which are best described by position weight matrices (PWMs). We have recently developed XXmotif, a de novo motif discovery method that is able to directly optimize the statistical significance of PWMs. XXmotif can also score conservation and positional clustering of motifs. The XXmotif server provides (i) a list of significantly overrepresented motif PWMs with web logos and E-values; (ii) a graph with color-coded boxes indicating the positions of selected motifs in the input sequences; (iii) a histogram of the overall positional distribution for selected motifs and (iv) a page for each motif with all significant motif occurrences, their P-values for enrichment, conservation and localization, their sequence contexts and coordinates. Free access: http://xxmotif.genzentrum.lmu.de.


Assuntos
Motivos de Nucleotídeos , Análise de Sequência de DNA , Análise de Sequência de RNA , Software , Internet , Matrizes de Pontuação de Posição Específica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...