Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Exp Bot ; 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38551810

RESUMO

Among plant pathogens, the necrotrophic fungus Botrytis cinerea is one of the most prevalent, leading to severe crop damage. Studies related to its colonization of different plant species have reported variable host metabolic responses to infection. In tomato, high N availability leads to decreased susceptibility. Metabolic flux analysis can be used as an integrated method to better understand which metabolic adaptations lead to effective host defence and resistance. Here, we investigated the metabolic response of tomato infected by B. cinerea in symptomless stem tissues proximal to the lesions, with a reconstructed metabolic model constrained with a large and consistent metabolic dataset acquired under four different N supplies, throughout 7 days post inoculation (dpi). An overall comparison of 48 flux solution vectors of Botrytis- and mock-inoculated plants showed that fluxes were higher in Botrytis-inoculated plants, and the difference increased with a reduction in available N, accompanying an unexpected increase in radial growth. Despite higher fluxes, such as those involved in cell wall synthesis and other pathways, fluxes related to glycolysis, the TCA cycle, amino acids and protein synthesis were limited under very low N, which might explain the enhanced susceptibility. Limiting starch synthesis and enhancing fluxes towards redox and specialized metabolism also contributed to defence independent of N supply.

2.
BMC Plant Biol ; 23(1): 239, 2023 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-37147560

RESUMO

BACKGROUND: Aphis gossypii, a strictly phloemophagaous aphid, colonize hundreds of plant families, and a group of clones formed a cucurbit-specialised host-race. Cucurbits are unique in having evolved a specific extra-fascicular phloem (EFP), which carries defence-related metabolites such as cucurbitacin, whereas the fascicular phloem (FP) is common to all higher plants and carries primary metabolites, such as raffinose-family oligosaccharides (RFOs). Both cucurbitacins (in the EFP) and galactinol (in the FP) have been suggested to be toxic to aphids. We investigated these hypotheses in cucurbit-specialized A. gossypii fed on melon plants with or without aphid-resistance conferred by the NLR gene Vat. We selected a plant-aphid system with (i) Vat-mediated resistance not triggered, (ii) Vat-mediated resistance triggered by an aphid clone adapted to the presence of Vat resistant alleles and (iii) Vat-mediated resistance triggered by a non-adapted aphid clone. RESULTS: We quantified cucurbitacin B, its glycosylated derivative, and sugars, in melon plants and aphids that fed on. The level of cucurbitacin in plants was unrelated to both aphid infestation and aphid resistance. Galactinol was present at higher quantities in plants when Vat-mediated resistance was triggered, but its presence did not correlate with aphid performance. Finally, we showed that cucurbit-specialized A. gossypii fed from the FP but could also occasionally access the EFP without sustainably feeding from it. However, the clone not adapted to Vat-mediated resistance were less able to access the FP when the Vat resistance was triggered. CONCLUSION: We concluded that galactinol accumulation in resistant plants does not affect aphids, but may play a role in aphid adaptation to fasting and that Cucurbitacin in planta is not a real threat to Aphis gossypii. Moreover, the specific phloem of Cucurbits is involved neither in A. gossypii cucurbit specialisation nor in adaptation to Vat-dependent resistance.


Assuntos
Afídeos , Cucurbitaceae , Animais , Cucurbitacinas , Açúcares , Floema
3.
Planta ; 257(2): 41, 2023 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-36680621

RESUMO

MAIN CONCLUSION: Severe N stress allows an accumulation of C-based compounds but impedes that of N-based compounds required to lower the susceptibility of tomato stem to Botrytis cinerea. Botrytis cinerea, a necrotrophic filamentous fungus, forms potentially lethal lesions on the stems of infected plants. Contrasted levels of susceptibility to B. cinerea were obtained in a tomato cultivar grown on a range of nitrate concentration: low N supply resulted in high susceptibility while high N supply conferred a strong resistance. Metabolic deviations and physiological traits resulting from both infection and nitrogen limitation were investigated in the symptomless stem tissue surrounding the necrotic lesion. Prior to infection, nitrogen-deficient plants showed reduced levels of nitrogen-based compounds such as amino acids, proteins, and glutathione and elevated levels of carbon-based and defence compounds such as α-tomatine and chlorogenic acid. After B. cinerea inoculation, all plants displayed a few common responses, mainly alanine accumulation and galactinol depletion. The metabolome of resistant plants grown under high N supply showed no significant change after inoculation. On the contrary, the metabolome of susceptible plants grown under low N supply showed massive metabolic adjustments, including changes in central metabolism around glutamate and respiratory pathways, suggesting active resource mobilization and production of energy and reducing power. Redox and defence metabolisms were also stimulated by the infection in plants grown under low N supply; glutathione and chlorogenic acid accumulated, as well as metabolites with more controversial defensive roles, such as polyamines, GABA, branched-chain amino acids and phytosterols. Taken together, the results showed that nitrogen deficiency, although leading to an increase in secondary metabolites even before the pathogen attack, must have compromised the constitutive levels of defence proteins and delayed or attenuated the induced responses. The involvement of galactinol, alanine, cycloartenol and citramalate in the tomato stem response to B. cinerea is reported here for the first time.


Assuntos
Solanum lycopersicum , Nitrogênio/metabolismo , Ácido Clorogênico , Botrytis/metabolismo , Alanina/metabolismo , Glutationa , Doenças das Plantas/microbiologia , Regulação da Expressão Gênica de Plantas
4.
New Phytol ; 237(4): 1285-1301, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36319610

RESUMO

Expression of OXIDATIVE SIGNAL-INDUCIBLE1 (OXI1) is induced by a number of stress conditions and regulates the interaction of plants with pathogenic and beneficial microbes. In this work, we generated Arabidopsis OXI1 knockout and genomic OXI1 overexpression lines and show by transcriptome, proteome, and metabolome analysis that OXI1 triggers ALD1, SARD4, and FMO1 expressions to promote the biosynthesis of pipecolic acid (Pip) and N-hydroxypipecolic acid (NHP). OXI1 contributes to enhanced immunity by induced SA biosynthesis via CBP60g-induced expression of SID2 and camalexin accumulation via WRKY33-targeted transcription of PAD3. OXI1 regulates genes involved in reactive oxygen species (ROS) generation such as RbohD and RbohF. OXI1 knock out plants show enhanced expression of nuclear and chloroplast genes of photosynthesis and enhanced growth under ambient conditions, while OXI1 overexpressing plants accumulate NHP, SA, camalexin, and ROS and show a gain-of-function (GOF) cell death phenotype and enhanced pathogen resistance. The OXI1 GOF phenotypes are completely suppressed when compromising N-hydroxypipecolic acid (NHP) synthesis in the fmo1 or ald1 background, showing that OXI1 regulation of immunity is mediated via the NHP pathway. Overall, these results show that OXI1 plays a key role in basal and effector-triggered plant immunity by regulating defense and programmed cell death via biosynthesis of salicylic acid, N-hydroxypipecolic acid, and camalexin.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , Estresse Oxidativo , Doenças das Plantas , Imunidade Vegetal , Espécies Reativas de Oxigênio/metabolismo , Ácido Salicílico/metabolismo
5.
Front Plant Sci ; 13: 992544, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36275570

RESUMO

The transcriptomic and metabolomic responses of peach to Myzus persicae infestation were studied in Rubira, an accession carrying the major resistance gene Rm2 causing antixenosis, and GF305, a susceptible accession. Transcriptome and metabolome showed both a massive reconfiguration in Rubira 48 hours after infestation while GF305 displayed very limited changes. The Rubira immune system was massively stimulated, with simultaneous activation of genes encoding cell surface receptors involved in pattern-triggered immunity and cytoplasmic NLRs (nucleotide-binding domain, leucine-rich repeat containing proteins) involved in effector-triggered immunity. Hypersensitive reaction featured by necrotic lesions surrounding stylet punctures was supported by the induction of cell death stimulating NLRs/helpers couples, as well as the activation of H2O2-generating metabolic pathways: photorespiratory glyoxylate synthesis and activation of the futile P5C/proline cycle. The triggering of systemic acquired resistance was suggested by the activation of pipecolate pathway and accumulation of this defense hormone together with salicylate. Important reduction in carbon, nitrogen and sulphur metabolic pools and the repression of many genes related to cell division and growth, consistent with reduced apices elongation, suggested a decline in the nutritional value of apices. Finally, the accumulation of caffeic acid conjugates pointed toward their contribution as deterrent and/or toxic compounds in the mechanisms of resistance.

6.
Int J Mol Sci ; 23(11)2022 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-35682842

RESUMO

Flavour and nutritional quality are important goals for tomato breeders. This study aimed to shed light upon transgressive behaviors for fruit metabolic content. We studied the metabolic contents of 44 volatile organic compounds (VOCs), 18 polyphenolics, together with transcriptome profiles in a factorial design comprising six parental lines and their 14 F1 hybrids (HF1) among which were five pairs of reciprocal HF1. After cluster analyses of the metabolome dataset and co-expression network construction of the transcriptome dataset, we characterized the mode of inheritance of each component. Both overall and per-cross mode of inheritance analyses revealed as many additive and non-additive modes of inheritance with few reciprocal effects. Up to 66% of metabolites displayed transgressions in a HF1 relative to parental values. Analysis of the modes of inheritance of metabolites revealed that: (i) transgressions were mostly of a single type whichever the cross and poorly correlated to the genetic distance between parental lines; (ii) modes of inheritance were scarcely consistent between the 14 crosses but metabolites belonging to the same cluster displayed similar modes of inheritance for a given cross. Integrating metabolome, transcriptome and modes of inheritance analyses suggested a few candidate genes that may drive important changes in fruit VOC contents.


Assuntos
Solanum lycopersicum , Compostos Orgânicos Voláteis , Frutas/genética , Frutas/metabolismo , Solanum lycopersicum/genética , Solanum lycopersicum/metabolismo , Metaboloma , Transcriptoma , Compostos Orgânicos Voláteis/metabolismo
7.
Ann Bot ; 127(1): 143-154, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-32853354

RESUMO

BACKGROUND AND AIMS: The main soluble sugars are important components of plant defence against pathogens, but the underlying mechanisms are unclear. Upon infection by Botrytis cinerea, the activation of several sugar transporters, from both plant and fungus, illustrates the struggle for carbon resources. In sink tissues, the metabolic use of the sugars mobilized in the synthesis of defence compounds or antifungal barriers is not fully understood. METHODS: In this study, the nitrogen-dependent variation of tomato stem susceptibility to B. cinerea was used to examine, before and throughout the course of infection, the transcriptional activity of enzymes involved in sugar metabolism. Under different nitrate nutrition regimes, the expression of genes that encode the enzymes of sugar metabolism (invertases, sucrose synthases, hexokinases, fructokinases and phosphofructokinases) was determined and sugar contents were measured before inoculation and in asymptomatic tissues surrounding the lesions after inoculation. KEY RESULTS: At high nitrogen availability, decreased susceptibility was associated with the overexpression of several genes 2 d after inoculation: sucrose synthases Sl-SUS1 and Sl-SUS3, cell wall invertases Sl-LIN5 to Sl-LIN9 and some fructokinase and phosphofructokinase genes. By contrast, increased susceptibility corresponded to the early repression of several genes that encode cell wall invertase and sucrose synthase. The course of sugar contents was coherent with gene expression. CONCLUSIONS: The activation of specific genes that encode sucrose synthase is required for enhanced defence. Since the overexpression of fructokinase is also associated with reduced susceptibility, it can be hypothesized that supplementary sucrose cleavage by sucrose synthases is dedicated to the production of cell wall components from UDP-glucose, or to the additional implication of fructose in the synthesis of antimicrobial compounds, or both.


Assuntos
Botrytis , Solanum lycopersicum , Regulação da Expressão Gênica de Plantas , Nitrogênio
8.
Nat Biotechnol ; 39(2): 169-173, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33169034

RESUMO

We engineered a machine learning approach, MSHub, to enable auto-deconvolution of gas chromatography-mass spectrometry (GC-MS) data. We then designed workflows to enable the community to store, process, share, annotate, compare and perform molecular networking of GC-MS data within the Global Natural Product Social (GNPS) Molecular Networking analysis platform. MSHub/GNPS performs auto-deconvolution of compound fragmentation patterns via unsupervised non-negative matrix factorization and quantifies the reproducibility of fragmentation patterns across samples.


Assuntos
Algoritmos , Cromatografia Gasosa-Espectrometria de Massas , Metabolômica , Animais , Anuros , Humanos
9.
Metabolites ; 10(10)2020 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-33096702

RESUMO

Metabolic profile is a key component of fruit quality, which is a challenge to study due to great compound diversity, especially in species with high nutritional value. This study presents optimized analytical methods for metabolic profiling in the fruits of three Solanaceae species: Lycium barbarum, Lycium chinense and Solanumlycopersicum. It includes the most important chemical classes involved in nutrition and taste, i.e., carotenoids, phenolic compounds and primary compounds. Emphasis has been placed on the systematic achievement of good extraction yields, sample stability, and high response linearity using common LC-ESI-TQ-MS and GC-EI-MS apparatuses. A set of 13 carotenoids, 46 phenolic compounds and 67 primary compounds were profiled in fruit samples. Chemometrics revealed metabolic markers discriminating Lycium and Solanum fruits but also Lycium barbarum and Lycium chinense fruits and the effect of the crop environment. Typical tomato markers were found to be lycopene, carotene, glutamate and GABA, while lycibarbarphenylpropanoids and zeaxanthin esters characterized goji (Lycium spp.) fruits. Among the compounds discriminating the Lycium species, reported here for the first time to our knowledge, chlorogenic acids, asparagine and quinic acid were more abundant in Lycium chinense, whereas Lycium barbarum accumulated more lycibarbarphenylpropanoids A-B, coumaric acid, fructose and glucose.

10.
Sci Rep ; 10(1): 11268, 2020 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-32647331

RESUMO

Programmed cell death (PCD) is essential for several aspects of plant life. We previously identified the mips1 mutant of Arabidopsis thaliana, which is deficient for the enzyme catalysing myo-inositol synthesis, and that displays light-dependent formation of lesions on leaves due to Salicylic Acid (SA) over-accumulation. Rationale of this work was to identify novel regulators of plant PCD using a genetic approach. A screen for secondary mutations that abolish the mips1 PCD phenotype identified a mutation in the BIG gene, encoding a factor of unknown molecular function that was previously shown to play pleiotropic roles in plant development and defence. Physiological analyses showed that BIG is required for lesion formation in mips1 via SA-dependant signalling. big mutations partly rescued transcriptomic and metabolomics perturbations as stress-related phytohormones homeostasis. In addition, since loss of function of the ceramide synthase LOH2 was not able to abolish cell death induction in mips1, we show that PCD induction is not fully dependent of sphingolipid accumulation as previously suggested. Our results provide further insights into the role of the BIG protein in the control of MIPS1-dependent cell death and also into the impact of sphingolipid homeostasis in this pathway.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Proteínas de Ligação a Calmodulina/genética , Inositol/metabolismo , Ácido Salicílico/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de Ligação a Calmodulina/metabolismo , Análise por Conglomerados , Epistasia Genética , Homeostase , Mutação , Fenótipo , Reguladores de Crescimento de Plantas/metabolismo , Folhas de Planta/metabolismo , Transdução de Sinais , Esfingolipídeos/metabolismo
11.
Nutrients ; 10(9)2018 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-30149503

RESUMO

Genipap (Genipa americana L.) is a native fruit from Amazonia that contains bioactive compounds with a wide range of bioactivities. However, the response to genipap juice ingestion in the human exposome has never been studied. To identify biomarkers of genipap exposure, the untargeted metabolomics approach in human urine was applied. Urine samples from 16 healthy male volunteers, before and after drinking genipap juice, were analyzed by liquid chromatography⁻high-resolution mass spectrometry. XCMS package was used for data processing in the R environment and t-tests were applied on log-transformed and Pareto-scaled data to select the significant metabolites. The principal component analysis (PCA) score plots showed a clear distinction between experimental groups. Thirty-three metabolites were putatively annotated and the most discriminant were mainly related to the metabolic pathways of iridoids and phenolic derivatives. For the first time, the bioavailability of genipap iridoids after human consumption is reported. Dihydroxyhydrocinnamic acid, (1R,6R)-6-hydroxy-2-succinylcyclohexa-2,4-diene-1-carboxylate, hydroxyhydrocinnamic acid, genipic acid, 12-demethylated-8-hydroxygenipinic acid, 3(7)-dehydrogenipinic acid, genipic acid glucuronide, nonate, and 3,4-dihydroxyphenylacetate may be considered biomarkers of genipap consumption. Human exposure to genipap reveals the production of derivative forms of bioactive compounds such as genipic and genipinic acid. These findings suggest that genipap consumption triggers effects on metabolic signatures.


Assuntos
Sucos de Frutas e Vegetais , Frutas , Iridoides/urina , Fenóis/urina , Rubiaceae , Administração Oral , Adolescente , Adulto , Biomarcadores/urina , Biotransformação , Cromatografia Líquida de Alta Pressão , Estudos Cross-Over , Humanos , Masculino , Metabolômica/métodos , Espectrometria de Massas por Ionização por Electrospray , Urinálise , Adulto Jovem
12.
Nat Commun ; 7: 13026, 2016 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-27713409

RESUMO

Expansion of the cytochrome P450 gene family is often proposed to have a critical role in the evolution of metabolic complexity, in particular in microorganisms, insects and plants. However, the molecular mechanisms underlying the evolution of this complexity are poorly understood. Here we describe the evolutionary history of a plant P450 retrogene, which emerged and underwent fixation in the common ancestor of Brassicales, before undergoing tandem duplication in the ancestor of Brassicaceae. Duplication leads first to gain of dual functions in one of the copies. Both sister genes are retained through subsequent speciation but eventually return to a single copy in two of three diverging lineages. In the lineage in which both copies are maintained, the ancestral functions are split between paralogs and a novel function arises in the copy under relaxed selection. Our work illustrates how retrotransposition and gene duplication can favour the emergence of novel metabolic functions.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Sistema Enzimático do Citocromo P-450/genética , Evolução Molecular , Fabaceae/genética , Genes de Plantas/genética , Turnera/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Fabaceae/metabolismo , Duplicação Gênica/genética , Variação Genética/genética , Retroelementos/genética , Turnera/metabolismo
13.
Plant Physiol ; 170(3): 1745-56, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26747283

RESUMO

Programmed cell death (PCD) is a crucial process both for plant development and responses to biotic and abiotic stress. There is accumulating evidence that chloroplasts may play a central role during plant PCD as for mitochondria in animal cells, but it is still unclear whether they participate in PCD onset, execution, or both. To tackle this question, we have analyzed the contribution of chloroplast function to the cell death phenotype of the myoinositol phosphate synthase1 (mips1) mutant that forms spontaneous lesions in a light-dependent manner. We show that photosynthetically active chloroplasts are required for PCD to occur in mips1, but this process is independent of the redox state of the chloroplast. Systematic genetic analyses with retrograde signaling mutants reveal that 3'-phosphoadenosine 5'-phosphate, a chloroplast retrograde signal that modulates nuclear gene expression in response to stress, can inhibit cell death and compromises plant innate immunity via inhibition of the RNA-processing 5'-3' exoribonucleases. Our results provide evidence for the role of chloroplast-derived signal and RNA metabolism in the control of cell death and biotic stress response.


Assuntos
Difosfato de Adenosina/metabolismo , Apoptose/fisiologia , Arabidopsis/metabolismo , Cloroplastos/metabolismo , Transdução de Sinais/fisiologia , Apoptose/genética , Arabidopsis/genética , Arabidopsis/microbiologia , Clorofila/metabolismo , Cloroplastos/genética , Resistência à Doença/genética , Mutação , Mio-Inositol-1-Fosfato Sintase/genética , Mio-Inositol-1-Fosfato Sintase/metabolismo , Oxirredução , Fotossíntese/genética , Fotossíntese/fisiologia , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Imunidade Vegetal/genética , Pseudomonas syringae/fisiologia , Transdução de Sinais/genética
14.
Front Microbiol ; 6: 993, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26441922

RESUMO

The acid mine drainage (AMD) in Carnoulès (France) is characterized by the presence of toxic metals such as arsenic. Several bacterial strains belonging to the Thiomonas genus, which were isolated from this AMD, are able to withstand these conditions. Their genomes carry several genomic islands (GEIs), which are known to be potentially advantageous in some particular ecological niches. This study focused on the role of the "urea island" present in the Thiomonas CB2 strain, which carry the genes involved in urea degradation processes. First, genomic comparisons showed that the genome of Thiomonas sp. CB2, which is able to degrade urea, contains a urea genomic island which is incomplete in the genome of other strains showing no urease activity. The urease activity of Thiomonas sp. CB2 enabled this bacterium to maintain a neutral pH in cell cultures in vitro and prevented the occurrence of cell death during the growth of the bacterium in a chemically defined medium. In AMD water supplemented with urea, the degradation of urea promotes iron, aluminum and arsenic precipitation. Our data show that ureC was expressed in situ, which suggests that the ability to degrade urea may be expressed in some Thiomonas strains in AMD, and that this urease activity may contribute to their survival in contaminated environments.

15.
Mol Plant ; 8(12): 1751-65, 2015 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-26388305

RESUMO

Global inspection of plant genomes identifies genes maintained in low copies across taxa and under strong purifying selection, which are likely to have essential functions. Based on this rationale, we investigated the function of the low-duplicated CYP715 cytochrome P450 gene family that appeared early in seed plants and evolved under strong negative selection. Arabidopsis CYP715A1 showed a restricted tissue-specific expression in the tapetum of flower buds and in the anther filaments upon anthesis. cyp715a1 insertion lines showed a strong defect in petal development, and transient alteration of pollen intine deposition. Comparative expression analysis revealed the downregulated expression of genes involved in pollen development, cell wall biogenesis, hormone homeostasis, and floral sesquiterpene biosynthesis, especially TPS21 and several key genes regulating floral development such as MYB21, MYB24, and MYC2. Accordingly, floral sesquiterpene emission was suppressed in the cyp715a1 mutants. Flower hormone profiling, in addition, indicated a modification of gibberellin homeostasis and a strong disturbance of the turnover of jasmonic acid derivatives. Petal growth was partially restored by the active gibberellin GA3 or the functional analog of jasmonoyl-isoleucine, coronatine. CYP715 appears to function as a key regulator of flower maturation, synchronizing petal expansion and volatile emission. It is thus expected to be an important determinant of flower-insect interaction.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/crescimento & desenvolvimento , Sistema Enzimático do Citocromo P-450/metabolismo , Flores/enzimologia , Sementes/enzimologia , Arabidopsis/classificação , Arabidopsis/enzimologia , Arabidopsis/genética , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Sequência Conservada , Sistema Enzimático do Citocromo P-450/química , Sistema Enzimático do Citocromo P-450/genética , Flores/classificação , Flores/genética , Flores/crescimento & desenvolvimento , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Filogenia , Plantas/classificação , Plantas/enzimologia , Plantas/genética , Sementes/classificação , Sementes/genética , Sementes/crescimento & desenvolvimento
16.
Phytochemistry ; 117: 388-399, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26164240

RESUMO

The role and fate of Jasmonoyl-Phenylalanine (JA-Phe), an understudied conjugate in the jasmonate pathway remain to be unraveled. We addressed here the possibility of JA-Phe oxidative turnover by cytochrome P450s of the CYP94 family. Leaf wounding or fungal infection in Arabidopsis resulted in accumulation of JA-Phe, 12-hydroxyl (12OH-JA-Phe) and 12-carboxyl (12COOH-JA-Phe) derivatives, with patterns differing from those previously described for Jasmonoyl-Isoleucine. In vitro, yeast-expressed cytochromes P450 CYP94B1, CYP94B3 and CYP94C1 differentially oxidized JA-Phe to 12-hydroxyl, 12-aldehyde and 12-carboxyl derivatives. Furthermore, a new aldehyde jasmonate, 12CHO-JA-Ile was detected in wounded plants. Metabolic analysis of CYP94B3 and CYP94C1 loss- and gain-of-function plant lines showed that 12OH-JA-Phe was drastically reduced in cyp94b3 but not affected in cyp94c1, while single or double mutants lacking CYP94C1 accumulated less 12COOH-JA-Phe than WT plants. This, along with overexpressing lines, demonstrates that hydroxylation by CYP94B3 and carboxylation by CYP94C1 accounts for JA-Phe turnover in planta. Evolutionary study of the CYP94 family in the plant kingdom suggests conserved roles of its members in JA conjugate homeostasis and possibly in adaptative functions. Our work extends the range and complexity of JA-amino acid oxidation by multifunctional CYP94 enzymes in response to environmental cues.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Ciclopentanos/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Isoleucina/análogos & derivados , Fenilalanina/análogos & derivados , Folhas de Planta/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Sistema Enzimático do Citocromo P-450/genética , Flores/metabolismo , Isoleucina/metabolismo , Mutação , Oxirredução , Fenilalanina/metabolismo , Filogenia
17.
Plant Cell ; 27(6): 1801-14, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26048869

RESUMO

Programmed cell death (PCD) is essential for several aspects of plant life, including development and stress responses. We recently identified the mips1 mutant of Arabidopsis thaliana, which is deficient for the enzyme catalyzing the limiting step of myo-inositol (MI) synthesis. One of the most striking features of mips1 is the light-dependent formation of lesions on leaves due to salicylic acid (SA)-dependent PCD. Here, we identified a suppressor of PCD by screening for mutations that abolish the mips1 cell death phenotype. Our screen identified the hxk1 mutant, mutated in the gene encoding the hexokinase1 (HXK1) enzyme that catalyzes sugar phosphorylation and acts as a genuine glucose sensor. We show that HXK1 is required for lesion formation in mips1 due to alterations in MI content, via SA-dependant signaling. Using two catalytically inactive HXK1 mutants, we also show that hexokinase catalytic activity is necessary for the establishment of lesions in mips1. Gas chromatography-mass spectrometry analyses revealed a restoration of the MI content in mips1 hxk1 that it is due to the activity of the MIPS2 isoform, while MIPS3 is not involved. Our work defines a pathway of HXK1-mediated cell death in plants and demonstrates that two MIPS enzymes act cooperatively under a particular metabolic status, highlighting a novel checkpoint of MI homeostasis in plants.


Assuntos
Proteínas de Arabidopsis/fisiologia , Arabidopsis/fisiologia , Morte Celular/fisiologia , Hexoquinase/fisiologia , Inositol/fisiologia , Arabidopsis/enzimologia , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Cromatografia Gasosa-Espectrometria de Massas , Genes de Plantas/genética , Genes de Plantas/fisiologia , Hexoquinase/genética , Inositol/metabolismo
18.
Nat Commun ; 5: 3606, 2014 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-24710322

RESUMO

The (seco)iridoids and their derivatives, the monoterpenoid indole alkaloids (MIAs), form two large families of plant-derived bioactive compounds with a wide spectrum of high-value pharmacological and insect-repellent activities. Vinblastine and vincristine, MIAs used as anticancer drugs, are produced by Catharanthus roseus in extremely low levels, leading to high market prices and poor availability. Their biotechnological production is hampered by the fragmentary knowledge of their biosynthesis. Here we report the discovery of the last four missing steps of the (seco)iridoid biosynthesis pathway. Expression of the eight genes encoding this pathway, together with two genes boosting precursor formation and two downstream alkaloid biosynthesis genes, in an alternative plant host, allows the heterologous production of the complex MIA strictosidine. This confirms the functionality of all enzymes of the pathway and highlights their utility for synthetic biology programmes towards a sustainable biotechnological production of valuable (seco)iridoids and alkaloids with pharmaceutical and agricultural applications.


Assuntos
Catharanthus/metabolismo , Iridoides/metabolismo , Catharanthus/genética , Genes de Plantas , Dados de Sequência Molecular , Nicotiana/genética
19.
Plant Cell ; 25(11): 4640-57, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24285789

RESUMO

The cytochrome P450 family encompasses the largest family of enzymes in plant metabolism, and the functions of many of its members in Arabidopsis thaliana are still unknown. Gene coexpression analysis pointed to two P450s that were coexpressed with two monoterpene synthases in flowers and were thus predicted to be involved in monoterpenoid metabolism. We show that all four selected genes, the two terpene synthases (TPS10 and TPS14) and the two cytochrome P450s (CYP71B31 and CYP76C3), are simultaneously expressed at anthesis, mainly in upper anther filaments and in petals. Upon transient expression in Nicotiana benthamiana, the TPS enzymes colocalize in vesicular structures associated with the plastid surface, whereas the P450 proteins were detected in the endoplasmic reticulum. Whether they were expressed in Saccharomyces cerevisiae or in N. benthamiana, the TPS enzymes formed two different enantiomers of linalool: (-)-(R)-linalool for TPS10 and (+)-(S)-linalool for TPS14. Both P450 enzymes metabolize the two linalool enantiomers to form different but overlapping sets of hydroxylated or epoxidized products. These oxygenated products are not emitted into the floral headspace, but accumulate in floral tissues as further converted or conjugated metabolites. This work reveals complex linalool metabolism in Arabidopsis flowers, the ecological role of which remains to be determined.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Flores/metabolismo , Monoterpenos/metabolismo , Monoterpenos Acíclicos , Proteínas de Arabidopsis/genética , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Flores/genética , Regulação da Expressão Gênica de Plantas , Liases Intramoleculares/genética , Liases Intramoleculares/metabolismo , Mutação , Plantas Geneticamente Modificadas , Saccharomyces cerevisiae/genética , Nicotiana/genética
20.
Plant J ; 76(6): 982-96, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24118112

RESUMO

Reductions in sulfur dioxide emissions and the use of sulfur-free mineral fertilizers are decreasing soil sulfur levels and threaten the adequate fertilization of most crops. To provide knowledge regarding legume adaptation to sulfur restriction, we subjected Medicago truncatula, a model legume species, to sulfur deficiency at various developmental stages, and compared the yield, nutrient allocation and seed traits. This comparative analysis revealed that sulfur deficiency at the mid-vegetative stage decreased yield and altered the allocation of nitrogen and carbon to seeds, leading to reduced levels of major oligosaccharides in mature seeds, whose germination was dramatically affected. In contrast, during the reproductive period, sulfur deficiency had little influence on yield and nutrient allocation, but the seeds germinated slowly and were characterized by low levels of a biotinylated protein, a putative indicator of germination vigor that has not been previously related to sulfur nutrition. Significantly, plants deprived of sulfur at an intermediary stage (flowering) adapted well by remobilizing nutrients from source organs to seeds, ensuring adequate quantities of carbon and nitrogen in seeds. This efficient remobilization of photosynthates may be explained by vacuolar sulfate efflux to maintain leaf metabolism throughout reproductive growth, as suggested by transcript and metabolite profiling. The seeds from these plants, deprived of sulfur at the floral transition, contained normal levels of major oligosaccharides but their germination was delayed, consistent with low levels of sucrose and the glycolytic enzymes required to restart seed metabolism during imbibition. Overall, our findings provide an integrative view of the legume response to sulfur deficiency.


Assuntos
Adaptação Fisiológica , Medicago truncatula/fisiologia , Sementes/fisiologia , Enxofre/deficiência , Transporte Biológico , Biomassa , Metabolismo dos Carboidratos , Carbono/metabolismo , Clorofila/metabolismo , Medicago truncatula/genética , Medicago truncatula/crescimento & desenvolvimento , Modelos Biológicos , Nitrogênio/metabolismo , Oligossacarídeos/metabolismo , Especificidade de Órgãos , Oxirredução , Fenótipo , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/fisiologia , RNA Mensageiro/genética , Rafinose/metabolismo , Sementes/genética , Sementes/crescimento & desenvolvimento , Sulfatos/metabolismo , Enxofre/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...