Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 12(1): 13374, 2022 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-35927440

RESUMO

Leptin exerts its effects on energy balance by inhibiting food intake and increasing energy expenditure via leptin receptors in the hypothalamus. While LepR neurons in the arcuate nucleus of the hypothalamus, the primary target of leptin, have been extensively studied, LepR neurons in other hypothalamic nuclei remain understudied. LepR neurons in the lateral hypothalamus contribute to leptin's effects on food intake and reward, but due to the low abundance of this population it has been difficult to study their molecular profile and responses to energy deficit. We here explore the transcriptome of LepR neurons in the LH and their response to energy deficit. Male LepR-Cre mice were injected in the LH with an AAV carrying Cre-dependent L10:GFP. Few weeks later the hypothalami from fed and food-restricted (24-h) mice were dissected and the TRAP protocol was performed, for the isolation of translating mRNAs from LepR cells in the LH, followed by RNA sequencing. After mapping and normalization, differential expression analysis was performed with DESeq2. We confirm that the isolated mRNA is enriched in LepR transcripts and other known neuropeptide markers of LepRLH neurons, of which we investigate the localization patterns in the LH. We identified novel markers of LepRLH neurons with association to energy balance and metabolic disease, such as Acvr1c, Npy1r, Itgb1, and genes that are differentially regulated by food deprivation, such as Fam46a and Rrad. Our dataset provides a reliable and extensive resource of the molecular makeup of LH LepR neurons and their response to food deprivation.


Assuntos
Região Hipotalâmica Lateral , Receptores para Leptina , Animais , Núcleo Arqueado do Hipotálamo/metabolismo , Metabolismo Energético/genética , Região Hipotalâmica Lateral/metabolismo , Hipotálamo/metabolismo , Leptina/metabolismo , Masculino , Camundongos , Neurônios/metabolismo , Receptores para Leptina/genética , Receptores para Leptina/metabolismo
2.
Sci Rep ; 9(1): 11146, 2019 07 31.
Artigo em Inglês | MEDLINE | ID: mdl-31366942

RESUMO

Targeting specific neuronal cell types is a major challenge for unraveling their function and utilizing specific cells for gene therapy strategies. Viral vector tools are widely used to target specific cells or circuits for these purposes. Here, we use viral vectors with short promoters of neuropeptide genes to target distinct neuronal populations in the hypothalamus of rats and mice. We show that lowering the amount of genomic copies is effective in increasing specificity of a melanin-concentrating hormone promoter. However, since too low titers reduce transduction efficacy, there is an optimal titer for achieving high specificity and sufficient efficacy. Other previously identified neuropeptide promoters as those for oxytocin and orexin require further sequence optimization to increase target specificity. We conclude that promoter-driven viral vectors should be used with caution in order to target cells specifically.


Assuntos
Vetores Genéticos/administração & dosagem , Hipotálamo/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Neuropeptídeos/administração & dosagem , Regiões Promotoras Genéticas/genética , Animais , Hormônios Hipotalâmicos/genética , Melaninas/genética , Camundongos , Camundongos Endogâmicos C57BL , Orexinas/genética , Ocitocina/genética , Hormônios Hipofisários/genética , Ratos , Ratos Long-Evans , Ratos Wistar
3.
Int J Obes (Lond) ; 41(7): 1131-1140, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28321131

RESUMO

BACKGROUND: Dopamine (DA) signalling in the brain is necessary for feeding behaviour, and alterations in the DA system have been linked to obesity. However, the precise role of DA in the control of food intake remains debated. On the one hand, food reward and motivation are associated with enhanced DA activity. On the other hand, psychostimulant drugs that increase DA signalling suppress food intake. This poses the questions of how endogenous DA neuronal activity regulates feeding, and whether enhancing DA neuronal activity would either promote or reduce food intake. METHODS: Here, we used designer receptors exclusively activated by designer drugs (DREADD) technology to determine the effects of enhancing DA neuronal activity on feeding behaviour. We chemogenetically activated selective midbrain DA neuronal subpopulations and assessed the effects on feeding microstructure in rats. RESULTS: Treatment with the psychostimulant drug amphetamine or the selective DA reuptake inhibitor GBR 12909 significantly suppressed food intake. Selective chemogenetic activation of DA neurons in the ventral tegmental area (VTA) was found to reduce meal size, but had less impact on total food intake. Targeting distinct VTA neuronal pathways revealed that specific activation of the mesolimbic pathway towards nucleus accumbens (NAc) resulted in smaller and shorter meals. In addition, the meal frequency was increased, rendering total food intake unaffected. The disrupted feeding patterns following activation of VTA DA neurons or VTA to NAc projection neurons were accompanied by locomotor hyperactivity. Activation of VTA neurons projecting towards prefrontal cortex or amygdala, or of DA neurons in the substantia nigra, did not affect feeding behaviour. CONCLUSIONS: Chemogenetic activation of VTA DA neurons or VTA to NAc pathway disrupts feeding patterns. Increased activity of mesolimbic DA neurons appears to both promote and reduce food intake, by facilitating both the initiation and cessation of feeding behaviour.


Assuntos
Dopamina/metabolismo , Neurônios Dopaminérgicos/efeitos dos fármacos , Neurônios Dopaminérgicos/fisiologia , Comportamento Alimentar/efeitos dos fármacos , Comportamento Alimentar/fisiologia , Mesencéfalo/citologia , Mesencéfalo/fisiologia , Anfetamina/farmacologia , Animais , Modelos Animais de Doenças , Inibidores da Captação de Dopamina/farmacologia , Ingestão de Alimentos/efeitos dos fármacos , Ingestão de Alimentos/fisiologia , Masculino , Vias Neurais/efeitos dos fármacos , Vias Neurais/fisiologia , Piperazinas/farmacologia , Ratos , Recompensa
4.
Int J Obes (Lond) ; 39(12): 1742-9, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26183405

RESUMO

BACKGROUND/OBJECTIVES: The rewarding value of palatable foods contributes to overconsumption, even in satiated subjects. Midbrain dopaminergic activity in response to reward-predicting environmental stimuli drives reward-seeking and motivated behavior for food rewards. This mesolimbic dopamine (DA) system is sensitive to changes in energy balance, yet it has thus far not been established whether reward signaling of DA neurons in vivo is under control of hormones that signal appetite and energy balance such as ghrelin and leptin. SUBJECTS/METHODS: We trained rats (n=11) on an operant task in which they could earn two different food rewards. We then implanted recording electrodes in the ventral tegmental area (VTA), and recorded from DA neurons during behavior. Subsequently, we assessed the effects of mild food restriction and pretreatment with the adipose tissue-derived anorexigenic hormone leptin or the orexigenic hormone ghrelin on VTA DA reward signaling. RESULTS: Animals showed an increase in performance following mild food restriction (P=0.002). Importantly, food-cue induced DA firing increased when animals were food restricted (P=0.02), but was significantly attenuated after leptin pretreatment (P=0.00). While ghrelin did affect baseline DA activity (P=0.025), it did not affect cue-induced firing (P⩾0.353). CONCLUSIONS: Metabolic signals, such as leptin, affect food seeking, a process that is dependent on the formation of cue-reward outcomes and involves midbrain DA signaling. These data show that food restriction engages the encoding of food cues by VTA DA neurons at a millisecond level and leptin suppresses this activity. This suggests that leptin is a key in linking metabolic information to reward signaling.


Assuntos
Dopamina/metabolismo , Neurônios Dopaminérgicos/patologia , Grelina/metabolismo , Leptina/metabolismo , Obesidade/patologia , Área Tegmentar Ventral/patologia , Animais , Apetite , Sinais (Psicologia) , Modelos Animais de Doenças , Comportamento Alimentar , Masculino , Hipernutrição , Ratos , Ratos Wistar , Recompensa , Transdução de Sinais
5.
J Neuroendocrinol ; 26(6): 377-85, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24698502

RESUMO

Rats on different free-choice (fc) diets for 1 week of either chow, saturated fat and liquid sugar (fcHFHS), chow and saturated fat (fcHF), or chow and liquid sugar (fcHS) have differential levels of neuropeptide Y (NPY) mRNA in the arcuate nucleus. Because these differences were not explained by plasma leptin levels but did predict subsequent feeding behaviour, in the present study, we first examined whether leptin sensitivity could explain these differences. Second, we focused on the role of NPY on feeding behaviour, and measured NPY mRNA levels and sensitivity to NPY after 4 weeks on the different choice diets. To determine leptin sensitivity, we measured food intake after i.p. leptin or vehicle injections in male Wistar rats subjected to the fcHFHS, fcHS, fcHF or Chow diets for 7 days. Next, we measured levels of arcuate nucleus NPY mRNA with in situ hybridisation in rats subjected to the choice diets for 4 weeks. Finally, we studied NPY sensitivity in rats subjected to the fcHFHS, fcHS, fcHF or Chow diet for 4 weeks by measuring food intake after administration of NPY or vehicle in the lateral ventricle. Leptin decreased caloric intake in rats on Chow, fcHS and fcHF but not in rats on the fcHFHS diet. After 4 weeks, rats on the fcHFHS diet remained hyperphagic, whereas fcHS and fcHF rats decreased caloric intake to levels similar to rats on Chow. By contrast to 1 week, after 4 weeks, levels of NPY mRNA were not different between the diet groups. Lateral ventricle administration of NPY resulted in higher caloric intake in fcHFHS rats compared to rats on the other choice diets or rats on Chow. Our data show that consuming a combination of saturated fat and liquid sugar results in leptin resistance and increased NPY sensitivity that is associated with persistent hyperphagia.


Assuntos
Dieta , Leptina/fisiologia , Neuropeptídeo Y/fisiologia , Animais , Ingestão de Energia/efeitos dos fármacos , Metabolismo Energético/efeitos dos fármacos , Comportamento Alimentar/efeitos dos fármacos , Comportamento Alimentar/fisiologia , Injeções Intraventriculares , Leptina/farmacologia , Masculino , Neuropeptídeo Y/biossíntese , Neuropeptídeo Y/farmacologia , Ratos , Ratos Wistar , Aumento de Peso/efeitos dos fármacos
6.
Gene Ther ; 21(2): 205-11, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24385145

RESUMO

RNA interference (RNAi) is a powerful strategy for unraveling gene function and for drug target validation, but exogenous expression of short hairpin RNAs (shRNAs) has been associated with severe side effects. These may be caused by saturation of the microRNA pathway. This study shows degenerative changes in cell morphology and intrusion of blood vessels after transduction of the ventromedial hypothalamus (VMH) of rats with a shRNA expressing adeno-associated viral (AAV) vector. To investigate whether saturation of the microRNA pathway has a role in the observed side effects, expression of neuronal microRNA miR-124 was used as a marker. Neurons transduced with the AAV vector carrying the shRNA displayed a decrease in miR-124 expression. The decreased expression was unrelated to shRNA sequence or target and observed as early as 1 week after injection. In conclusion, this study shows that the tissue response after AAV-directed expression of a shRNA to the VMH is likely to be caused by shRNA-induced saturation of the microRNA pathway. We recommend controlling for miR-124 expression when using RNAi as a tool for studying (loss of) gene function in the brain as phenotypic effects caused by saturation of the RNAi pathway might mask true effects of specific downregulation of the shRNA target.


Assuntos
Vetores Genéticos/efeitos adversos , MicroRNAs/genética , Neurônios/metabolismo , RNA Interferente Pequeno/farmacologia , Transdução de Sinais/efeitos dos fármacos , Animais , Dependovirus/genética , Regulação da Expressão Gênica , Vetores Genéticos/administração & dosagem , MicroRNAs/toxicidade , Especificidade de Órgãos , RNA Interferente Pequeno/genética , Ratos , Ratos Wistar , Núcleo Hipotalâmico Ventromedial/metabolismo
7.
Int J Obes (Lond) ; 38(5): 643-9, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-23979221

RESUMO

OBJECTIVES: Rats subjected to a free-choice high-fat high-sugar (fcHFHS) diet persistently overeat, exhibit increased food-motivated behavior and become overtly obese. Conversely, several studies using a non-choice (nc) high-energy diet showed only an initial increase in food intake with unaltered or reduced food-motivated behavior. This raises the question of the importance of choice in the persistence of hyperphagia in rats on a fcHFHS diet. SUBJECTS: Meal patterns, food intake and body weight gain were studied in male Wistar rats on free-choice diets with fat and/or sugar and in rats on nc diets with fat and sugar (custom made with ingredients similar to the fcHFHS diet). RESULTS: Rats on a ncHFHS diet initially overconsumed, but reduced intake thereafter, whereas rats on a fcHFHS diet remained hyperphagic. Because half of the sugar intake in the fcHFHS group occurred during the inactive period, we next determined whether sugar intake during the light phase was a necessary requirement for hyperphagia, by restricting access to liquid sugar to either the light or dark period with unlimited access to fat and chow. Results showed that hyperphagia occurred irrespective of the timing of sugar intake. Meal pattern analysis revealed consumption of larger but fewer meals in the ncHFHS group, as well as the fcHF group. Interestingly, meal number was increased in all rats drinking liquid sugar (whether on a fcHFHS or a fcHS diet), whereas a compensatory decrease in meal size was only observed in the fcHS group, but not the fcHFHS group. CONCLUSION: We hereby show the importance of choice in the observation of fcHFHS diet-induced hyperphagia, which results in increases in meal number due to sugar drinking without any compensatory decrease in meal size. We thus provide a novel dietary model in rats that mimics important features of human overconsumption that have been ignored in rodent models of obesity.


Assuntos
Hiperfagia/patologia , Obesidade/patologia , Lanches , Aumento de Peso , Animais , Peso Corporal , Comportamento de Escolha , Gorduras na Dieta , Sacarose Alimentar , Modelos Animais de Doenças , Ingestão de Alimentos , Ingestão de Energia , Comportamento Alimentar , Hiperfagia/sangue , Masculino , Obesidade/sangue , Ratos , Ratos Wistar
8.
Int J Obes (Lond) ; 37(7): 1012-9, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23069665

RESUMO

BACKGROUND: Cues that are associated with the availability of food are known to trigger food anticipatory activity (FAA). This activity is expressed as increased locomotor activity and enables an animal to prepare for maximal utilization of nutritional resources. Although the exact neural network that mediates FAA is still unknown, several studies have revealed that the medial hypothalamus is involved. Interestingly, this area is responsive to the anorexigenic hormone leptin and the orexigenic hormone ghrelin that have been shown to modulate FAA. However, how FAA is regulated by neuronal activity and how leptin and ghrelin modulate this activity is still poorly understood. OBJECTIVE: We aimed to examine how the total neuronal population and individual neurons in the medial hypothalamus respond to cue-signaled food availability in awake, behaving rats. In addition, ghrelin and leptin were injected to investigate whether these hormones could have a modulatory role in the regulation of FAA. DESIGN: Using in vivo electrophysiology, neuronal activity was recorded in the medial hypothalamus in freely moving rats kept on a random feeding schedule, in which a light cue signaled upcoming food delivery. Ghrelin and leptin were administered systemically following the behavioral paradigm. RESULTS: The food-predictive cue induced FAA as well as a significant increase in neural activity on a population level. More importantly, a sub-population of medial hypothalamic neurons displayed highly correlated identical responses to both ghrelin and FAA, suggesting that these neurons are part of the network that regulates FAA. CONCLUSION: This study reveals a role for ghrelin, but not leptin, signaling within medial hypothalamus in FAA on both a population level and in single cells, identifying a subset of neurons onto which cue information and ghrelin signaling converge, possibly to drive FAA.


Assuntos
Comportamento Alimentar/fisiologia , Grelina/metabolismo , Leptina/metabolismo , Atividade Motora/fisiologia , Animais , Antecipação Psicológica/efeitos dos fármacos , Comportamento Animal , Sinais (Psicologia) , Comportamento Alimentar/efeitos dos fármacos , Grelina/farmacologia , Hipotálamo/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Leptina/farmacologia , Masculino , Atividade Motora/efeitos dos fármacos , Neuropeptídeo Y/metabolismo , Ratos , Ratos Wistar
9.
Int J Obes (Lond) ; 36(2): 254-61, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21556042

RESUMO

OBJECTIVE: Significant weight gain is a problematic side effect of treatment with the antipsychotic drug olanzapine (OLA). Previous studies in rats suggest that one of the contributing factors is an impairment in satiation that results in increased food intake. However, the mechanisms underlying this impairment in satiation remain largely unclear. METHODS AND RESULTS: In this study, we determined the effect of OLA on levels of leptin, insulin, ghrelin, cholecystokinin (CCK), glucagon-like peptide-1, peptide YY and amylin in male rats that had received a fixed amount of food. OLA did not affect the secretion of any of these hormones, except for ghrelin levels, which were increased compared with controls. Furthermore, when ghrelin levels were determined in rats just before they received their meal, OLA caused a significant increase in ghrelin levels compared with controls, whereas OLA failed to affect baseline ghrelin levels. Next, we investigated the effect of OLA on the efficacy of CCK to reduce meal size. With coadministration, OLA pretreatment counteracted the reduction in meal size by CCK, although there was no significant interaction between the treatments. Finally, telemetry measurements revealed that acute OLA treatment causes a temporary decrease in both locomotor activity and body core temperature. CONCLUSION: Taken together, this study shows that acute injection of OLA selectively increases meal-related ghrelin secretion and this may partially underlie the impairment in satiation by OLA.


Assuntos
Antipsicóticos/farmacologia , Benzodiazepinas/farmacologia , Temperatura Corporal/efeitos dos fármacos , Colecistocinina/efeitos dos fármacos , Grelina/efeitos dos fármacos , Atividade Motora/efeitos dos fármacos , Peptídeo YY/efeitos dos fármacos , Análise de Variância , Animais , Colecistocinina/metabolismo , Ingestão de Alimentos , Grelina/metabolismo , Peptídeo 1 Semelhante ao Glucagon/efeitos dos fármacos , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Polipeptídeo Amiloide das Ilhotas Pancreáticas/efeitos dos fármacos , Polipeptídeo Amiloide das Ilhotas Pancreáticas/metabolismo , Masculino , Olanzapina , Peptídeo YY/metabolismo , Ratos , Ratos Wistar , Saciação/efeitos dos fármacos
10.
Int J Obes (Lond) ; 35(4): 595-604, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20714332

RESUMO

OBJECTIVES: In diet-induced obesity, it is not clear whether impaired glucose metabolism is caused directly by the diet, or indirectly via obesity. This study examined the effects of different free-choice, high-caloric, obesity-inducing diets on glucose metabolism. In these free-choice diets, saturated fat and/or a 30% sugar solution are provided in an addition to normal chow pellets. METHOD: In the first experiment, male rats received a free-choice high-fat high-sugar (HFHS), free-choice high-fat (HF) or a chow diet. In a second experiment, male rats received a free-choice high-sugar (HS) diet or chow diet. For both experiments, after weeks 1 and 4, an intravenous glucose tolerance test was performed. RESULTS: Both the HFHS and HF diets resulted in obesity with comparable plasma concentrations of free fatty acids. Interestingly, the HF diet did not affect glucose metabolism, whereas the HFHS diet resulted in hyperglycemia, hyperinsulinemia and in glucose intolerance because of a diminished insulin response. Moreover, adiposity in rats on the HF diet correlated positively with the insulin response to the glucose load, whereas adiposity in rats on the HFHS diet showed a negative correlation. In addition, total caloric intake did not explain differences in glucose tolerance. To test whether sugar itself was crucial, we next performed a similar experiment in rats on the HS diet. Rats consumed three times as much sugar when compared with rats on the HFHS diet, which resulted in obesity with basal hyperinsulinemia. Glucose tolerance, however, was not affected. CONCLUSION: Together, these results suggest that not only obesity or total caloric intake, but the diet content also is crucial for the glucose intolerance that we observed in rats on the HFHS diet.


Assuntos
Glicemia/metabolismo , Gorduras na Dieta/efeitos adversos , Sacarose Alimentar/efeitos adversos , Intolerância à Glucose/etiologia , Obesidade/complicações , Animais , Gorduras na Dieta/administração & dosagem , Gorduras na Dieta/sangue , Sacarose Alimentar/administração & dosagem , Sacarose Alimentar/sangue , Ingestão de Energia , Teste de Tolerância a Glucose , Insulina/metabolismo , Masculino , Obesidade/sangue , Ratos , Ratos Wistar
11.
Int J Obes (Lond) ; 35(5): 629-41, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-20733584

RESUMO

OBJECTIVE: Reduction of melanocortin signaling in the brain results in obesity. However, where in the brain reduced melanocortin signaling mediates this effect is poorly understood. DESIGN: We determined the effects of long-term inhibition of melanocortin receptor activity in specific brain regions of the rat brain. Melanocortin signaling was inhibited by injection of a recombinant adeno-associated viral (rAAV) vector that overexpressed Agouti-related peptide (AgRP) into the paraventricular nucleus (PVN), the ventromedial hypothalamus (VMH), the lateral hypothalamus (LH) or the accumbens shell (Acc). RESULTS: Overexpression of AgRP in the rat PVN, VMH or LH increased bodyweight, the percentage of white adipose tissue, plasma leptin and insulin concentrations and food intake. Food intake was mainly increased because of an increase in meal size in the light and dark phases, after overexpression of AgRP in the PVN, LH or VMH. Overexpression of AgRP in the PVN or VMH reduced average body core temperature in the dark on day 40 post injection, whereas AgRP overexpression in the LH did not affect temperature. In addition, overexpression of AgRP in the PVN, LH or VMH did not significantly alter mRNA expression of AgRP, neuropeptide Y (NPY), pro-opiomelanocortin (POMC) or suppressor of cytokine signaling 3 (SOCS3) in the arcuate. Overexpression of AgRP in the Acc did not have any effect on the measured parameters. CONCLUSIONS: Reduction of melanocortin signaling in several hypothalamic regions increased meal size. However, there were brain area-specific effects on other parameters such as core temperature and plasma leptin concentrations. In a previous study, where NPY was overexpressed with an rAAV vector in the PVN and LH, meal frequency and meal size were increased respectively, whereas locomotor activity was reduced by NPY overexpression at both nuclei. Taken together, AgRP and NPY have complementary roles in energy balance.


Assuntos
Proteína Relacionada com Agouti/metabolismo , Peso Corporal/fisiologia , Metabolismo Energético/fisiologia , Hipotálamo/metabolismo , Obesidade/metabolismo , Receptores de Melanocortina/fisiologia , Animais , Linhagem Celular , Ingestão de Alimentos/fisiologia , Região Hipotalâmica Lateral/metabolismo , Hipotálamo/fisiologia , Masculino , Núcleos da Linha Média do Tálamo/metabolismo , Núcleo Accumbens/metabolismo , Obesidade/fisiopatologia , Ratos , Ratos Wistar , Receptores de Melanocortina/antagonistas & inibidores , Núcleo Hipotalâmico Ventromedial/metabolismo
12.
J Mol Endocrinol ; 45(5): 341-53, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20819948

RESUMO

An increase in brain suppressor of cytokine signaling 3 (SOCS3) has been implicated in the development of both leptin and insulin resistance. Socs3 mRNA is localized throughout the brain, and it remains unclear which brain areas are involved in the effect of SOCS3 levels on energy balance. We investigated the role of SOCS3 expressed in the mediobasal hypothalamus (MBH) in the development of diet-induced obesity in adult rats. Socs3 mRNA was down-regulated by local injection of adeno-associated viral vectors expressing a short hairpin directed against Socs3, after which we determined the response to high-fat high-sucrose choice diet. In contrast to neuronal Socs3 knockout mice, rats with SOCS3 knockdown limited to the MBH showed increased body weight gain, larger amounts of white adipose tissue, and higher leptin concentrations at the end of the experiment. These effects were partly due to the decrease in locomotor activity, as 24 h food intake was comparable with controls. In addition, rats with Socs3 knockdown in the MBH showed alterations in their meal patterns: average meal size in the light period was increased and was accompanied by a compensatory decrease in meal frequency in the dark phase. In addition, neuropeptide Y (Npy) mRNA levels were significantly increased in the arcuate nucleus of Socs3 knockdown rats. Since leptin is known to stimulate Npy transcription in the absence of Socs3, these data suggest that knockdown of Socs3 mRNA limited to the MBH increases Npy mRNA levels, which subsequently decreases locomotor activity and alters feeding patterns.


Assuntos
Metabolismo Energético , Comportamento Alimentar , Hipotálamo/metabolismo , Obesidade/metabolismo , Proteínas Supressoras da Sinalização de Citocina/genética , Proteínas Supressoras da Sinalização de Citocina/fisiologia , Animais , Composição Corporal , Peso Corporal/fisiologia , Encéfalo/metabolismo , Regulação para Baixo , Técnicas de Silenciamento de Genes , Células HEK293 , Humanos , Insulina/metabolismo , Leptina/metabolismo , Masculino , Neuropeptídeo Y/genética , Neuropeptídeo Y/metabolismo , RNA Mensageiro/genética , RNA Interferente Pequeno , Ratos , Ratos Wistar , Transdução de Sinais , Aumento de Peso
13.
Int J Obes (Lond) ; 34(3): 537-46, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20029382

RESUMO

OBJECTIVES: The mechanisms for how saturated fat and sugar-based beverages contribute to human obesity are poorly understood. This paper describes a series of experiments developed to examine the response of hypothalamic neuropeptides to diets rich in sugar and fat, using three different diets: a high-fat high-sugar (HFHS) choice diet with access to chow, saturated fat and a 30% sugar solution; a high-fat (HF) choice diet with access to chow and saturated fat; or to a high-sugar (HS) choice diet with access to chow and a sugar solution. METHOD: We first studied caloric intake, body weight gain, hormonal alterations and hypothalamic neuropeptide expression when male Wistar rats were subjected to an HFHS choice, an HF choice or an HS choice diet for 1 week. Next, we studied caloric intake and body weight gain when rats were subjected to the choice diets for 5 weeks. Finally, we measured neuropeptide expression in hepatic vagotomized rats subjected to an HFHS choice, an HF choice or an HS choice diet for 1 week. RESULTS: In rats on an HF choice diet, plasma leptin concentrations and proopiomelanocortin (POMC) mRNA increased and neuropeptide Y (NPY) mRNA decreased. Rats on an HFHS choice diet showed identical plasma leptin concentrations as rats on an HF choice diet. However, NPY mRNA increased and POMC mRNA decreased. An HS choice diet for 1 week did not alter hypothalamic neuropeptide expression or plasma leptin concentrations. As hormonal changes did not explain the differences in hypothalamic neuropeptide expression between rats on the choice diets, we addressed whether neuronal feedback signals mediated the hypothalamic neuropeptide response. The POMC mRNA response to different diets depended on an intact innervation of liver and upper intestinal tract. CONCLUSION: Our data suggest that the specific combination of saturated fat and a 30% sugar solution results in hyperphagia-induced obesity and alters hypothalamic neuropeptide expression, and that the response of the melanocortin system is mediated by the hepatic vagus.


Assuntos
Gorduras na Dieta/efeitos adversos , Sacarose Alimentar/efeitos adversos , Hiperfagia/complicações , Neuropeptídeo Y/sangue , Obesidade/etiologia , Animais , Peso Corporal/fisiologia , Gorduras na Dieta/administração & dosagem , Sacarose Alimentar/administração & dosagem , Ingestão de Energia/fisiologia , Expressão Gênica , Hiperfagia/sangue , Hiperfagia/fisiopatologia , Leptina/sangue , Fígado/inervação , Masculino , Obesidade/sangue , Obesidade/fisiopatologia , Pró-Opiomelanocortina/sangue , Ratos , Ratos Wistar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...