Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Am J Physiol Regul Integr Comp Physiol ; 323(5): R638-R647, 2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-36094451

RESUMO

Military and/or emergency services personnel may be required to perform high-intensity physical activity during exposure to elevated inspired carbon dioxide (CO2). Although many of the physiological consequences of hypercapnia are well characterized, the effects of graded increases in inspired CO2 on self-paced endurance performance have not been determined. The aim of this study was to compare the effects of 0%, 2%, and 4% inspired CO2 on 2-mile run performance, as well as physiological and perceptual responses during time trial exercise. Twelve physically active volunteers (peak oxygen uptake = 49 ± 5 mL·kg-1·min-1; 3 women) performed three experimental trials in a randomized, single-blind, crossover manner, breathing 21% oxygen with either 0%, 2%, or 4% CO2. During each trial, participants completed 10 min of walking at ∼40% peak oxygen uptake followed by a self-paced 2-mile treadmill time trial. One participant was unable to complete the 4% CO2 trial due to lightheadedness during the run. Compared with the 0% CO2 trial, run performance was 5 ± 3% and 7 ± 3% slower in the 2% and 4% CO2 trials, respectively (both P < 0.001). Run performance was significantly slower with 4% versus 2% CO2 (P = 0.046). The dose-dependent performance impairments were accompanied by stepwise increases in mean ventilation, despite significant reductions in running speed. Dyspnea and headache were significantly elevated during the 4% CO2 trial compared with both the 0% and 2% trials. Overall, our findings show that graded increases in inspired CO2 impair endurance performance in a stepwise manner in healthy humans.


Assuntos
Dióxido de Carbono , Hipercapnia , Feminino , Humanos , Teste de Esforço , Oxigênio , Consumo de Oxigênio/fisiologia , Resistência Física/fisiologia , Método Simples-Cego
2.
Am J Physiol Regul Integr Comp Physiol ; 319(1): R114-R122, 2020 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-32432914

RESUMO

Exercise-heat acclimation (EHA) induces adaptations that improve tolerance to heat exposure. Whether adaptations from EHA can also alter responses to hypobaric hypoxia (HH) conditions remains unclear. This study assessed whether EHA can alter time-trial performance and/or incidence of acute mountain sickness (AMS) during HH exposure. Thirteen sea-level (SL) resident men [SL peak oxygen consumption (V̇o2peak) 3.19 ± 0.43 L/min] completed steady-state exercise, followed by a 15-min cycle time trial and assessment of AMS before (HH1; 3,500 m) and after (HH2) an 8-day EHA protocol [120 min; 5 km/h; 2% incline; 40°C and 40% relative humidity (RH)]. EHA induced lower heart rate (HR) and core temperature and plasma volume expansion. Time-trial performance was not different between HH1 and HH2 after 2 h (106.3 ± 23.8 vs. 101.4 ± 23.0 kJ, P = 0.71) or 24 h (107.3 ± 23.4 vs. 106.3 ± 20.8 kJ, P > 0.9). From HH1 to HH2, HR and oxygen saturation, at the end of steady-state exercise and time-trial tests at 2 h and 24 h, were not different (P > 0.05). Three of 13 volunteers developed AMS during HH1 but not during HH2, whereas a fourth volunteer only developed AMS during HH2. Heat shock protein 70 was not different from HH1 to HH2 at SL [1.9 ± 0.7 vs. 1.8 ± 0.6 normalized integrated intensities (NII), P = 0.97] or after 23 h (1.8 ± 0.4 vs. 1.7 ± 0.5 NII, P = 0.78) at HH. Our results indicate that this EHA protocol had little to no effect-neither beneficial nor detrimental-on exercise performance in HH. EHA may reduce AMS in those who initially developed AMS; however, studies at higher elevations, having higher incidence rates, are needed to confirm our findings.


Assuntos
Aclimatação , Pressão do Ar , Exercício Físico/fisiologia , Temperatura Alta , Hipóxia/fisiopatologia , Adolescente , Altitude , Doença da Altitude/fisiopatologia , Limiar Anaeróbio , Proteínas de Choque Térmico HSP70/metabolismo , Frequência Cardíaca , Humanos , Umidade , Masculino , Desempenho Físico Funcional , Mecânica Respiratória , Adulto Jovem
3.
Mil Med ; 185(7-8): e1161-e1167, 2020 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-32175586

RESUMO

INTRODUCTION: High altitude missions pose significant challenges to Warfighter medical readiness and performance. Decreased circulating oxygen levels cause a decrease in exercise performance and can cause debilitating symptoms associated with acute mountain sickness, especially with rapid ascent. Acetazolamide (AZ) is known to minimize symptoms of acute mountain sickness, but it is unknown whether this medication alters hand strength and manual dexterity during altitude exposure. MATERIALS AND METHODS: Ten male volunteers (22 ± 4 yr, 75.9 ± 13.7 kg, 174.9 ± 9.3 cm) participated in two separate 30 h simulated altitude exposures (496 mmHg, equivalent to 3,500 m, 20°C, 20% RH) in a hypobaric chamber. Participants were given either a placebo or 250 mg of AZ twice daily for 3.5 d (2 sea-level [SL] days + the 30 h altitude exposure) in a randomized, single-blind, crossover design. During SL and both altitude (ALT) exposures, hand function tests were performed, including hand grip and finger pinch strength tests, as well as the Purdue Pegboard (PP) and magazine loading tests to assess manual dexterity. Paired T tests and two-way repeated measure analysis of variance were used as appropriate to evaluate the effects of AZ and ALT. The value of p < 0.05 was accepted for statistical significance. RESULTS: There were no influences of acute ALT exposure or AZ treatment on hand strength (eg, grip strength; SL: 39.2 ± 5.5 kg vs. ALT: 41.5 ± 6.9 kg, p > 0.05) or dexterity (eg, PPassembly; placebo: 35.5 ± 5.3 vs. AZ: 34.3 ± 4.6, p > 0.05) in our volunteers. Two dexterity tests (PPsum and magazine loading) showed improvements over time at ALT, regardless of treatment, where scores were improved after 10 h of exposure compared to at 1 h (eg, magazine loading: 56 ± 12 vs. 48 ± 10, p < 0.001). This pattern was not seen in the PPassembly test or any strength measurements. CONCLUSIONS: Our results suggest that 500 mg/d of AZ does not influence hand strength or manual dexterity during a 30 h exposure to 3,500 m simulated ALT. Acute ALT exposure (1 h) did not influence dexterity or strength, although some measures of dexterity showed improvements as exposure time increased. We conclude that use of AZ to optimize medical readiness at ALT is unlikely to impair the Warfighter's ability to complete mission tasks that depend on hand function.


Assuntos
Força da Mão , Acetazolamida/farmacologia , Acetazolamida/uso terapêutico , Adolescente , Adulto , Altitude , Doença da Altitude , Humanos , Masculino , Método Simples-Cego , Adulto Jovem
4.
J Strength Cond Res ; 34(4): 946-951, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32058361

RESUMO

Coffman, KE, Luippold, AJ, Salgado, RM, Heavens, KR, Caruso, EM, Fulco, CS, and Kenefick, RW. Aerobic exercise performance during load carriage and acute altitude exposure. J Strength Cond Res 34(4): 946-951, 2020-This study quantified the impact of combined load carriage and acute altitude exposure on 5-km running time-trial (TT) performance and self-selected pacing strategy. Furthermore, this study developed a velocity prediction tool (nomogram) for similar aerobic exercise tasks performed under various combinations of altitude and load stress. Nine volunteers (6M/3F, age: 24 ± 7 years, height: 171 ± 6 cm, body mass: 72 ± 7 kg, and V[Combining Dot Above]O2peak: 50.5 ± 5.2 ml·min·kg) completed a randomized, repeated-measures design protocol. Volunteers performed 3 familiarization (FAM) trials at sea level (SL; 250 m) with no-load carriage. Experimental testing included 3 self-paced, blinded 5-km running TT on a treadmill while carrying a 30% body mass external load at SL, moderate altitude (MA; 2000 m), and high altitude (HA; 3000 m). At SL, load carriage resulted in a 36% decrement in 5-km exercise performance in comparison with FAM trials (43 ± 7 vs. 32 ± 3 minutes; p < 0.001). Time required to complete the 5-km distance while carrying an external load was increased by 11% when performed at HA vs. SL (48 ± 7 vs. 43 ± 7 minutes; p = 0.001). TT pace was not different among experimental conditions (load carriage at SL, MA, and HA) until after 1 km of the running distance had been completed. Heart rate was not different among experimental conditions throughout the entire TT (170 ± 17 b·min). These data quantify the anticipated reduction in aerobic exercise performance under various combinations of acute altitude exposure and load carriage conditions. The self-paced running TT approach used presently allowed for development of an altitude-load nomogram for use in recreational, occupational, or military settings.


Assuntos
Altitude , Exercício Físico/fisiologia , Suporte de Carga/fisiologia , Adolescente , Adulto , Teste de Esforço/métodos , Feminino , Frequência Cardíaca , Humanos , Masculino , Militares , Consumo de Oxigênio , Corrida/fisiologia , Adulto Jovem
5.
J Int Soc Sports Nutr ; 17(1): 4, 2020 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-31918720

RESUMO

BACKGROUND: The ergogenic effects of supplemental carbohydrate on aerobic exercise performance at high altitude (HA) may be modulated by acclimatization status. Longitudinal evaluation of potential performance benefits of carbohydrate supplementation in the same volunteers before and after acclimatization to HA have not been reported. PURPOSE: This study examined how consuming carbohydrate affected 2-mile time trial performance in lowlanders at HA (4300 m) before and after acclimatization. METHODS: Fourteen unacclimatized men performed 80 min of metabolically-matched (~ 1.7 L/min) treadmill walking at sea level (SL), after ~ 5 h of acute HA exposure, and after 22 days of HA acclimatization and concomitant 40% energy deficit (chronic HA). Before, and every 20 min during walking, participants consumed either carbohydrate (CHO, n = 8; 65.25 g fructose + 79.75 g glucose, 1.8 g carbohydrate/min) or flavor-matched placebo (PLA, n = 6) beverages. A self-paced 2-mile treadmill time trial was performed immediately after completing the 80-min walk. RESULTS: There were no differences (P > 0.05) in time trial duration between CHO and PLA at SL, acute HA, or chronic HA. Time trial duration was longer (P < 0.05) at acute HA (mean ± SD; 27.3 ± 6.3 min) compared to chronic HA (23.6 ± 4.5 min) and SL (17.6 ± 3.6 min); however, time trial duration at chronic HA was still longer than SL (P < 0.05). CONCLUSION: These data suggest that carbohydrate supplementation does not enhance aerobic exercise performance in lowlanders acutely exposed or acclimatized to HA. TRIAL REGISTRATION: NCT, NCT02731066, Registered March 292,016.


Assuntos
Aclimatação , Altitude , Carboidratos/farmacologia , Suplementos Nutricionais , Exercício Físico/fisiologia , Frequência Cardíaca , Humanos , Estudos Longitudinais , Masculino , Consumo de Oxigênio , Esforço Físico
6.
Am J Physiol Regul Integr Comp Physiol ; 317(4): R571-R575, 2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31365305

RESUMO

Exposure to hot environments augments cutaneous vasodilation and sweating during exercise compared with these responses in cooler environments. The effects of hypobaric hypoxia on these responses are less clear, as are the effects of heat and simulated altitude combined. We evaluated the individual and potential additive effects of environmental heat and hypobaric hypoxia on skin blood flow and sweating responses during exercise. Thirteen volunteers (11 M, 2 F; age 25.3 ± 6.1 yr; height 177 ± 9 cm; weight 81.2 ± 16.8 kg) completed 30 min of steady-state (SS) exercise on a cycle ergometer at 50% V̇o2peak during four separate conditions: 1) sea level thermoneutral (SLTN; 250 m, 20°C, 30-50% RH), 2) sea level hot (SLH; 250 m, 35°C, 30% RH), 3) simulated altitude thermoneutral (ATN; 3,000 m, 20°C, 30-50% RH), and 4) simulated altitude hot (AH; 3,000 m, 35°C, 30% RH). Skin blood flow and local sweating rate (LSR) were recorded on the ventral forearm. During exercise, SS cutaneous vascular conductance in AH (63 ± 31% peak) and SLH (52 ± 19% peak) were significantly higher than both SLTN (20 ± 9% peak, P < 0.001) and ATN (25 ± 12% peak, P < 0.05) but were not different from each other (P > 0.05). SS LSR was similarly increased in the hot environments but unaffected by simulated altitude. We propose that multiple antagonistic mechanisms during exposure to 3,000-m simulated altitude result in no net effect on skin blood flow or sweating responses during exercise in thermoneutral or hot environments.


Assuntos
Hemodinâmica/fisiologia , Temperatura Alta , Hipóxia/metabolismo , Fenômenos Fisiológicos da Pele , Sudorese/fisiologia , Adulto , Temperatura Corporal , Exercício Físico , Feminino , Humanos , Masculino , Vasodilatação/fisiologia , Adulto Jovem
7.
J Appl Physiol (1985) ; 127(2): 513-519, 2019 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-31219777

RESUMO

Heat and hypobaric hypoxia independently compromise exercise performance; however, their combined impact on exercise performance has yet to be quantified. This study examined the effects of heat, hypobaric hypoxia, and the combination of these environments on self-paced cycling time trial (TT) performance. Twelve subjects [2 female, 10 male; sea level (SL) peak oxygen consumption (V̇o2peak), 41.5 ± 4.4 mL·kg-1·min-1, mean ± SD] completed 30 min of steady-state cycling exercise (50% SL V̇o2peak), followed by a 15-min self-paced TT in four environmental conditions: SL thermoneutral [SLTN; 250 m, 20°C, 30-50% relative humidity (rh)], SL hot (SLH; 250 m, 35°C, 30% rh), hypobaric hypoxia thermoneutral (HTN; 3,000 m, 20°C, 30-50% rh), and hypobaric hypoxia hot (HH; 3,000 m, 35°C, 30% rh). Performance was assessed by the total work (kJ) completed. TT performance was lower (P < 0.05) in SLH, HTN, and HH relative to SLTN (-15.4 ± 9.7, -24.1 ± 16.2, and -33.1 ± 13.4 kJ, respectively). Additionally, the total work completed in HTN and HH was lower (P < 0.05) than that in SLH. In SLH, HTN, and HH, work rate was reduced versus SLTN (P < 0.05) within the first 3 min of exercise and was consistent for the remainder of the bout. No differences (P > 0.05) existed for heart rate or Ratings of Perceived Exertion at the end of exercise among conditions. The decrease in self-paced TT performance in the heat and/or hypobaric hypoxia conditions compared with SLTN conditions resulted from a nearly immediate reduction in work rate that may have been regulated by environmentally induced changes in physiological strain and perception of effort in response to TT exercise.NEW & NOTEWORTHY This is the first known study to examine the combined effects of heat and hypobaric hypoxia on short-duration self-paced cycling time trial performance. Regardless of environmental condition, subjects utilized an even work rate for the entire duration of the time trial. The presence of both environmental stressors led to a greater performance impairment than heat or hypobaric hypoxia alone, and the performance decrement stemmed from an early reduction of work rate.


Assuntos
Exercício Físico/fisiologia , Hipóxia/fisiopatologia , Adulto , Altitude , Feminino , Frequência Cardíaca/fisiologia , Temperatura Alta , Humanos , Masculino , Consumo de Oxigênio/fisiologia , Fatores de Tempo
8.
Mil Med ; 183(9-10): e338-e342, 2018 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-29912380

RESUMO

BACKGROUND: Fluid intake during military training is prescribed based on the interactions among work rates, environmental conditions, and uniform configurations. The efficacy of this guidance has not been empirically assessed in over a decade. To determine the acceptability of the fluid intake guidance, sweat losses were measured in a variety of conditions with modern uniform/body armor configurations and were then compared to prescribed fluid intakes for each condition (workload, environment, clothing). METHODS: Whole body sweat losses of 324 Soldiers and 14 model simulations were measured under a variety of work intensities ((Watts) easy, moderate, hard), work durations (2-25 h), environmental conditions (White-Black flag), and uniform configurations (including Army Combat Uniform and body armor). Whole body sweat losses were then calculated relative to 4 h drinking guidance and in accordance with TB MED 507 recommended work/rest ratios. The differences between the prescribed fluid intake and sweat loss were calculated and expressed as a percent loss or gain of body weight. Values within a threshold of ±2% body water flux (BWF) were deemed an acceptable conservative starting point for performance and health concerns. FINDINGS: Values within ±2% BWF numbered 309/338; 25 of 338 observations exceeded the +2% BWF while 4 of 338 observations exceeded the -2% BWF. When total fluid restriction was simulated, all experienced body weight loss with 151 of 338 observations exceeding the -2% BWF. DISCUSSION: When calculated using actual measured sweating rates from the laboratory and model simulations, current fluid intake guidance appears to predict with 91.4% accuracy the volume of fluid required to maintain a proper euhydrated state (±2%) during 4 h of exercise. Simulations of total fluid restriction support the necessity for fluid intake guidance so that the Warfighter's performance does not degrade. It is recommended that the current military fluid intake guidance focuses on methods for accurately tracking fluid intakes.


Assuntos
Hidratação/normas , Guias como Assunto/normas , Temperatura Alta/efeitos adversos , Desempenho Profissional/normas , Ingestão de Líquidos/fisiologia , Hidratação/métodos , Hidratação/tendências , Humanos , Suor/efeitos dos fármacos , Suor/fisiologia , Desempenho Profissional/estatística & dados numéricos
9.
JPEN J Parenter Enteral Nutr ; 42(7): 1185-1193, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29377181

RESUMO

BACKGROUND: The efficacy of different commercial beverage compositions for meeting oral rehydration therapy (ORT) goals in the treatment of acute dehydration in healthy humans has not been systematically tested. The objective of the study was to compare fluid retention, plasma volume (PV), and interstitial fluid (ISF) volume restoration when using 1 popular glucose-based and 1 novel amino acid-based (AA) commercial ORT beverage following experimental hypertonic or isotonic dehydration. METHODS: Twenty-six healthy adults (21 males, 5 females) underwent either a controlled bout of hypertonic (n = 13) or isotonic (n = 13) dehydration (3%-4% body mass) via eccrine or renal body water and electrolyte losses induced using exercise-heat stress (EHS) or Lasix administration (LAS), respectively. Rehydration was achieved over 90 minutes by matching fluid intake to water losses (1:1) using a sports drink (SP) or AA commercial ORT beverage. Fluid retention (water and electrolytes), PV, and ISF volume changes were tracked for 180 minutes. RESULTS: AA produced significantly (P <0.05) greater fluid retention (75% vs 57%), ISF volume restoration, and tended (P = 0.06) to produce greater PV restoration in trial EHS. In trial LAS, neither beverage exceeded 65% retention, but AA replaced electrolytes and preserved ISF volume better than SP (P <0.05). CONCLUSION: The results of this study demonstrate superior rehydration when using AA compared with SP for both hypertonic and isotonic dehydration.


Assuntos
Aminoácidos/uso terapêutico , Bebidas , Desidratação/terapia , Hidratação , Glucose/uso terapêutico , Equilíbrio Hidroeletrolítico/efeitos dos fármacos , Doença Aguda , Adolescente , Adulto , Aminoácidos/farmacologia , Desidratação/etiologia , Eletrólitos/administração & dosagem , Eletrólitos/metabolismo , Exercício Físico/fisiologia , Feminino , Furosemida , Glucose/farmacologia , Objetivos , Temperatura Alta/efeitos adversos , Humanos , Masculino , Plasma/metabolismo , Valores de Referência , Fenômenos Fisiológicos da Nutrição Esportiva , Água/administração & dosagem , Água/metabolismo , Adulto Jovem
10.
Med Sci Sports Exerc ; 49(12): 2570-2577, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28767522

RESUMO

PURPOSE: This study aimed to investigate the effect of increasing external loads on 5-km treadmill time trial (TT) performance in 20°C and 40°C environmental conditions and to construct an ecologically relevant performance prediction decision aid. METHODS: Twenty-six male and four female volunteers (age, 23.5 ± 6.9 yr; weight, 76.0 ± 8.9 kg; height, 1.75 ± 0.07 m; V˙O2peak, 50.7 ± 4.5 mL·kg·min) participated in a counterbalanced, mixed-model design, with each subject assigned to a load group (20%, 30%, or 50% body mass (BM); n = 10 per group). Volunteers performed three, self-paced 5-km familiarization TT (treadmill) without external load. Each volunteer then performed a 5-km TT in each environment with loads of either 20% (n = 10), 30% (n = 10), or 50% (n = 10) of BM. RESULTS: 1) Loads of (20%, 30%, and 50% of BM) impaired 5-km TT performance compared with that when unloaded (P < 0.05); 2) the time penalties of the 20% and 30% load were <50% load (P < 0.05); 3) in all trials, the addition of heat exposure reduced 5-km TT performance beyond the penalty of load itself (P < 0.05); and 4) the combination of heat and 50% load resulted in a substantial penalty such that continuous work was not sustainable for all of the volunteers. CONCLUSIONS: Relative to prediction models using fixed or constant workload exercise trials, an ecologically valid decision aid was developed from self-paced data, in which pace (km·h) can be predicted for individual levels of heat, load, or heat + load in combination.


Assuntos
Desempenho Atlético/fisiologia , Técnicas de Apoio para a Decisão , Temperatura Alta , Corrida/fisiologia , Suporte de Carga/fisiologia , Índice de Massa Corporal , Temperatura Corporal/fisiologia , Teste de Esforço/métodos , Feminino , Frequência Cardíaca/fisiologia , Transtornos de Estresse por Calor/fisiopatologia , Humanos , Masculino , Militares , Nomogramas , Consumo de Oxigênio/fisiologia , Temperatura Cutânea/fisiologia , Adulto Jovem
11.
J Neurophysiol ; 118(4): 2232-2237, 2017 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-28747468

RESUMO

We hypothesized that muscle sympathetic nerve activity (MSNA) during head-up tilt (HUT) would be augmented during exercise-induced (hyperosmotic) dehydration but not isoosmotic dehydration via an oral diuretic. We studied 26 young healthy subjects (7 female, 19 male) divided into three groups: euhydrated (EUH, n = 7), previously exercised in 40°C while maintaining hydration; dehydrated (DEH, n = 10), previously exercised in 40°C during which ~3% of body weight was lost via sweat loss; and diuretic (DIUR, n = 9), a group that did not exercise but lost ~3% of body weight via diuresis (furosemide, 80 mg by mouth). We measured MSNA, heart rate (HR), and blood pressure (BP) during supine rest and 30° and 45° HUT. Plasma volume (PV) decreased similarly in DEH (-8.5 ± 3.3%) and DIUR (-11.4 ± 5.7%) (P > 0.05). Plasma osmolality was similar between DIUR and EUH (288 ± 4 vs. 284 ± 5 mmol/kg, respectively) but was significantly higher in DEH (299 ± 5 mmol/kg) (P < 0.05). Mixed-model ANOVA was used with repeated measures on position (HUT) and between-group analysis on condition. HR and MSNA increased in all subjects during HUT (main effect of position; P < 0.05). There was also a significant main effect of group, such that MSNA and HR were higher in DEH compared with DIUR (P < 0.05). Changes in HR with HUT were larger in both hypovolemic groups compared with EUH (P < 0.05). The differential HUT response "strategies" in each group suggest a greater role for hypovolemia per se in controlling HR responses during dehydration, and a stronger role for osmolality in control of SNA.NEW & NOTEWORTHY Interactions of volume regulation with control of vascular sympathetic nerve activity (SNA) have important implications for blood pressure regulation. Here, we demonstrate that SNA and heart rate (HR) during hyperosmotic hypovolemia (exercise-induced) were augmented during supine and tilt compared with isoosmotic hypovolemia (diuretic), which primarily augmented the HR response. Our data suggest that hypovolemia per se had a larger role in controlling HR responses, whereas osmolality had a stronger role in control of SNA.


Assuntos
Diurese , Exercício Físico , Hemodinâmica , Hipovolemia/fisiopatologia , Postura , Sistema Nervoso Simpático/fisiologia , Feminino , Humanos , Hipovolemia/etiologia , Masculino , Músculo Esquelético/inervação , Músculo Esquelético/fisiologia , Adulto Jovem
12.
J Appl Physiol (1985) ; 123(5): 1214-1227, 2017 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-28705998

RESUMO

This study examined whether normobaric hypoxia (NH) treatment is more efficacious for sustaining high-altitude (HA) acclimatization-induced improvements in ventilatory and hematologic responses, acute mountain sickness (AMS), and cognitive function during reintroduction to altitude (RA) than no treatment at all. Seventeen sea-level (SL) residents (age = 23 ± 6 yr; means ± SE) completed in the following order: 1) 4 days of SL testing; 2) 12 days of HA acclimatization at 4,300 m; 3) 12 days at SL post-HA acclimatization (Post) where each received either NH (n = 9, [Formula: see text] = 0.122) or Sham (n = 8; [Formula: see text] = 0.207) treatment; and 4) 24-h reintroduction to 4,300-m altitude (RA) in a hypobaric chamber (460 Torr). End-tidal carbon dioxide pressure ([Formula: see text]), hematocrit (Hct), and AMS cerebral factor score were assessed at SL, on HA2 and HA11, and after 20 h of RA. Cognitive function was assessed using the SynWin multitask performance test at SL, on HA1 and HA11, and after 4 h of RA. There was no difference between NH and Sham treatment, so data were combined. [Formula: see text] (mmHg) decreased from SL (37.2 ± 0.5) to HA2 (32.2 ± 0.6), decreased further by HA11 (27.1 ± 0.4), and then increased from HA11 during RA (29.3 ± 0.6). Hct (%) increased from SL (42.3 ± 1.1) to HA2 (45.9 ± 1.0), increased again from HA2 to HA11 (48.5 ± 0.8), and then decreased from HA11 during RA (46.4 ± 1.2). AMS prevalence (%) increased from SL (0 ± 0) to HA2 (76 ± 11) and then decreased at HA11 (0 ± 0) and remained depressed during RA (17 ± 10). SynWin scores decreased from SL (1,615 ± 62) to HA1 (1,306 ± 94), improved from HA1 to HA11 (1,770 ± 82), and remained increased during RA (1,707 ± 75). These results demonstrate that HA acclimatization-induced improvements in ventilatory and hematologic responses, AMS, and cognitive function are partially retained during RA after 12 days at SL whether or not NH treatment is utilized.NEW & NOTEWORTHY This study demonstrates that normobaric hypoxia treatment over a 12-day period at sea level was not more effective for sustaining high-altitude (HA) acclimatization during reintroduction to HA than no treatment at all. The noteworthy aspect is that athletes, mountaineers, and military personnel do not have to go to extraordinary means to retain HA acclimatization to an easily accessible and relevant altitude if reexposure occurs within a 2-wk time period.


Assuntos
Aclimatação/fisiologia , Doença da Altitude/fisiopatologia , Altitude , Exercício Físico/fisiologia , Hipóxia/fisiopatologia , Ventilação Pulmonar/fisiologia , Adolescente , Adulto , Doença da Altitude/sangue , Doença da Altitude/diagnóstico , Feminino , Frequência Cardíaca/fisiologia , Humanos , Hipóxia/sangue , Hipóxia/diagnóstico , Masculino , Pessoa de Meia-Idade , Resultado do Tratamento , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...