Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
1.
Vaccine ; 39(47): 6920-6929, 2021 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-34696934

RESUMO

Protein bodies (PBs) are particles consisting of insoluble, aggregated proteins with potential as a vaccine formulation. PBs can contain high concentrations of antigen, are stable and relatively resistant to proteases, release antigen slowly and are cost-effective to manufacture. Yet, the capacity of PBs to provoke immune responses and protection in the upper respiratory tract, a major entry route of respiratory pathogens, is largely unknown. In this study, we vaccinated mice intranasally with PBs comprising antigens from Streptococcus pneumoniae and evaluated the level of protection against nasopharyngeal colonization. PBs composed of the α-helical domain of pneumococcal surface protein A (PspAα) provided superior protection against colonization with S. pneumoniae compared to soluble PspAα. Immunization with soluble protein or PBs induced differences in antibody binding to pneumococci as well as a highly distinct antigen-specific nasal cytokine profile upon in vivo stimulation with inactivated S. pneumoniae. Moreover, immunization with PBs composed of conserved putative pneumococcal antigens reduced colonization by S. pneumoniae in mice, both as a single- and as a multi-antigen formulation. In conclusion, PBs represent a vaccine formulation that elicits strong mucosal immune responses and protection. The versatility of this platform offers opportunities for development of next-generation vaccine formulations.


Assuntos
Infecções Pneumocócicas , Streptococcus pneumoniae , Administração Intranasal , Animais , Anticorpos Antibacterianos , Proteínas de Bactérias , Imunidade nas Mucosas , Camundongos , Infecções Pneumocócicas/prevenção & controle , Vacinas Pneumocócicas , Vacinação
2.
Proc Natl Acad Sci U S A ; 100(10): 5801-6, 2003 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-12724529

RESUMO

The Escherichia coli inner membrane protein (IMP) YidC is involved in the membrane integration of IMPs both in concert with and independently from the Sec translocase. YidC seems to be dispensable for the assembly of Sec-dependent IMPs, and so far it has been shown to be essential only for the proper Sec-independent integration of some phage coat proteins. Here, we studied the physiological consequences of YidC depletion in an effort to understand the essential function of YidC. The loss of YidC rapidly and specifically induced the Psp stress response, which is accompanied by a reduction of the proton-motive force. This reduction is due to defects in the functional assembly of cytochrome o oxidase and the F(1)F(o) ATPase complex, which is reminiscent of the effects of mutations in the yidC homologue OXA1 in the yeast mitochondrial inner membrane. The integration of CyoA (subunit II of the cytochrome o oxidase) and F(o)c (membrane subunit of the F(1)F(o) ATPase) appeared exceptionally sensitive to depletion of YidC, suggesting that these IMPs are natural substrates of a membrane integration and assembly pathway in which YidC plays an exclusive or at least a pivotal role.


Assuntos
Membrana Celular/metabolismo , Membrana Celular/ultraestrutura , Proteínas de Escherichia coli/biossíntese , Escherichia coli/metabolismo , Proteínas de Membrana Transportadoras/biossíntese , Consumo de Oxigênio/fisiologia , Sequência de Aminoácidos , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Cinética , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Proteínas de Membrana Transportadoras/química , Proteínas de Membrana Transportadoras/metabolismo , Dados de Sequência Molecular , Fragmentos de Peptídeos/química , Canais de Translocação SEC
3.
FEMS Microbiol Lett ; 205(1): 147-50, 2001 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-11728729

RESUMO

The enzyme Hbp (hemoglobin protease) of the pathogenic Escherichia coli strain EB1 has been purified to homogeneity by gel filtration chromatography. The purified protein is capable of binding heme and shows hemoglobin protease activity. Our method of purification is applicable not only to Hbp but also to other autotransporter proteins and will contribute to a better understanding of the function-structure relationship of this family of proteins.


Assuntos
Endopeptidases/isolamento & purificação , Escherichia coli/enzimologia , Sequência de Aminoácidos , Animais , Proteínas de Transporte/química , Proteínas de Transporte/isolamento & purificação , Meios de Cultivo Condicionados/química , Endopeptidases/química , Escherichia coli/crescimento & desenvolvimento , Heme/metabolismo , Dados de Sequência Molecular , Coelhos
4.
EMBO Rep ; 2(11): 1040-6, 2001 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-11713194

RESUMO

Recent studies have indicated that FtsY, the signal recognition particle receptor of Escherichia coli, plays a central role in membrane protein biogenesis. For proper function, FtsY must be targeted to the membrane, but its membrane-targeting pathway is unknown. We investigated the relationship between targeting and function of FtsY in vivo, by separating its catalytic domain (NG) from its putative targeting domain (A) by three means: expression of split ftsY, insertion of various spacers between A and NG, and separation of A and NG by in vivo proteolysis. Proteolytic separation of A and NG does not abolish function, whereas separation by long linkers or expression of split ftsY is detrimental. We propose that proteolytic cleavage of FtsY occurs after completion of co-translational targeting and assembly of NG. In contrast, separation by other means may interrupt proper synchronization of co-translational targeting and membrane assembly of NG. The co-translational interaction of FtsY with the membrane was confirmed by in vitro experiments.


Assuntos
Proteínas de Bactérias/metabolismo , Membrana Celular/metabolismo , Receptores Citoplasmáticos e Nucleares/metabolismo , Partícula de Reconhecimento de Sinal/metabolismo , Western Blotting , Domínio Catalítico , Fracionamento Celular , Escherichia coli/metabolismo , Modelos Biológicos , Mutação , Plasmídeos/metabolismo , Ligação Proteica , Biossíntese de Proteínas , Estrutura Terciária de Proteína
5.
FEBS Lett ; 505(2): 245-8, 2001 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-11566184

RESUMO

In Escherichia coli, protein export from the cytoplasm may occur via the signal recognition particle (SRP)-dependent pathway or the Sec-dependent pathway. Membrane proteins utilize the SRP-dependent route, whereas many secretory proteins use the cytoplasmic Sec machinery. To examine the possibility that signal peptide hydrophobicity governs which targeting route is utilized, we used a series of PhoA signal sequence mutants which vary only by incremental hydrophobicity changes. We show that depletion of SRP, but not trigger factor, affects all the mutants examined. These results suggest secretory proteins with a variety of signal sequences, as well as membrane proteins, require SRP for export.


Assuntos
Proteínas de Bactérias/fisiologia , Proteínas de Escherichia coli , Partícula de Reconhecimento de Sinal/fisiologia , Fosfatase Alcalina , Sequência de Aminoácidos , Proteínas de Bactérias/metabolismo , Transporte Biológico , Membrana Celular/metabolismo , Cromossomos/metabolismo , Quinases Ciclina-Dependentes , Citoplasma/metabolismo , Eletroforese em Gel de Poliacrilamida , Escherichia coli/metabolismo , Dados de Sequência Molecular , Mutação , Peptidilprolil Isomerase/metabolismo , Plasmídeos/metabolismo , Testes de Precipitina , Homologia de Sequência de Aminoácidos , Partícula de Reconhecimento de Sinal/metabolismo
6.
FEBS Lett ; 501(1): 1-5, 2001 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-11457446

RESUMO

This review focuses on a novel, evolutionarily conserved mediator of membrane protein assembly in bacteria, mitochondria and chloroplasts. This factor is designated YidC in Escherichia coli, and is localized in the inner membrane. YidC is homologous to Oxa1p in the mitochondrial inner membrane and Alb3 in the chloroplast thylakoid membrane, but does not seem to have a homologue in the endoplasmic reticulum membrane. It has been suggested that YidC operates both as a separate unit and in connection with the SecYEG-translocon depending on the substrate membrane protein that is integrated into the membrane. Mitochondria do not possess a SecYEG-like complex and Oxa1p is thought to form, or to contribute to the formation of, a novel translocon in the mitochondrial inner membrane. Alb3 in the chloroplast thylakoid membrane is, just like YidC and Oxa1p, involved in membrane protein assembly, but only few details are known.


Assuntos
Proteínas de Arabidopsis , Proteínas de Bactérias/metabolismo , Sequência Conservada , Proteínas de Escherichia coli , Proteínas de Membrana/metabolismo , Proteínas de Membrana Transportadoras , Proteínas Nucleares/metabolismo , Proteínas de Plantas/metabolismo , Cloroplastos/metabolismo , Complexo IV da Cadeia de Transporte de Elétrons , Humanos , Membranas Intracelulares/química , Membranas Intracelulares/metabolismo , Proteínas de Membrana/química , Mitocôndrias/metabolismo , Proteínas Mitocondriais , Transporte Proteico , Canais de Translocação SEC
7.
EMBO Rep ; 2(6): 519-23, 2001 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-11415985

RESUMO

The inner membrane protein YidC is associated with the preprotein translocase of Escherichia coli and contacts transmembrane segments of nascent inner membrane proteins during membrane insertion. YidC was purified to homogeneity and co-reconstituted with the SecYEG complex. YidC had no effect on the SecA/SecYEG-mediated translocation of the secretory protein proOmpA; however, using a crosslinking approach, the transmembrane segment of nascent FtsQ was found to gain access to YidC via SecY. These data indicate the functional reconstitution of the initial stages of YidC-dependent membrane protein insertion via the SecYEG complex.


Assuntos
Adenosina Trifosfatases/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas de Transporte/metabolismo , Proteínas de Escherichia coli , Proteínas de Membrana/metabolismo , Proteínas de Membrana Transportadoras , Membrana Celular/enzimologia , Membrana Celular/metabolismo , Códon , Reagentes de Ligações Cruzadas/farmacologia , Dimerização , Escherichia coli/enzimologia , Escherichia coli/metabolismo , Plasmídeos/metabolismo , Ligação Proteica , Biossíntese de Proteínas , Proteolipídeos/metabolismo , RNA Mensageiro/metabolismo , Canais de Translocação SEC , Proteínas SecA , Transcrição Gênica , Translocação Genética
8.
EMBO Rep ; 2(6): 524-9, 2001 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-11415986

RESUMO

Recent studies identified YidC as a novel membrane factor that may play a key role in membrane insertion of inner membrane proteins (IMPs), both in conjunction with the Sec-translocase and as a separate entity. Here, we show that the type II IMP FtsQ requires both the translocase and, to a lesser extent, YidC in vivo. Using photo-crosslinking we demonstrate that the transmembrane (TM) domain of the nascent IMP FtsQ inserts into the membrane close to SecY and lipids, and moves to a combined YidC/lipid environment upon elongation. These data are consistent with a crucial role for YidC in the lateral transfer of TM domains from the Sec translocase into the lipid bilayer.


Assuntos
Adenosina Trifosfatases/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas de Transporte/metabolismo , Membrana Celular/enzimologia , Proteínas de Escherichia coli , Proteínas de Membrana/metabolismo , Proteínas de Membrana Transportadoras , Membrana Celular/metabolismo , Eletroforese em Gel de Poliacrilamida , Escherichia coli/enzimologia , Escherichia coli/metabolismo , Metabolismo dos Lipídeos , Modelos Biológicos , Plasmídeos/metabolismo , Ligação Proteica , Estrutura Terciária de Proteína , RNA Mensageiro/metabolismo , Ribossomos/metabolismo , Canais de Translocação SEC , Proteínas SecA
9.
Mol Microbiol ; 40(2): 314-22, 2001 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-11309115

RESUMO

For a long time, it was generally assumed that the biogenesis of inner membrane proteins in Escherichia coli occurs spontaneously, and that only the translocation of large periplasmic domains requires the aid of a protein machinery, the Sec translocon. However, evidence obtained in recent years indicates that most, if not all, inner membrane proteins require the assistance of protein factors to reach their native conformation in the membrane. Here, we review and discuss recent advances in our understanding of the biogenesis of inner membrane proteins in E. coli.


Assuntos
Proteínas de Bactérias/metabolismo , Proteínas de Escherichia coli , Escherichia coli/metabolismo , Proteínas de Membrana/metabolismo , Proteínas de Bactérias/química , Membrana Celular/metabolismo , Escherichia coli/genética , Proteínas de Membrana/química , Dobramento de Proteína , Transporte Proteico
10.
J Biol Chem ; 276(22): 18804-11, 2001 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-11278858

RESUMO

Spheroplasts were used to study the early interactions of newly synthesized outer membrane protein PhoE with periplasmic proteins employing a protein cross-linking approach. Newly translocated PhoE protein could be cross-linked to the periplasmic chaperone Skp at the periplasmic side of the inner membrane. To study the timing of this interaction, a PhoE-dihydrofolate reductase hybrid protein was constructed that formed translocation intermediates, which had the PhoE moiety present in the periplasm and the dihydrofolate reductase moiety tightly folded in the cytoplasm. The hybrid protein was found to cross-link to Skp, indicating that PhoE closely interacts with the chaperone when the protein is still in a transmembrane orientation in the translocase. Removal of N-terminal parts of PhoE protein affected Skp binding in a cumulative manner, consistent with the presence of two Skp-binding sites in that region. In contrast, deletion of C-terminal parts resulted in variable interactions with Skp, suggesting that interaction of Skp with the N-terminal region is influenced by parts of the C terminus of PhoE protein. Both the soluble as well as the membrane-associated Skp protein were found to interact with PhoE. The latter form is proposed to be involved in the initial interaction with the N-terminal regions of the outer membrane protein.


Assuntos
Membrana Celular/metabolismo , Citoplasma/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas de Escherichia coli , Chaperonas Moleculares/metabolismo , Periplasma/metabolismo , Porinas/química , Porinas/metabolismo , Sítios de Ligação , Eletroforese em Gel de Poliacrilamida , Escherichia coli/metabolismo , Plasmídeos/metabolismo , Testes de Precipitina , Ligação Proteica , Biossíntese de Proteínas , Proteínas Recombinantes de Fusão/metabolismo , Tetra-Hidrofolato Desidrogenase/metabolismo , Transcrição Gênica
11.
RNA ; 7(2): 293-301, 2001 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-11233986

RESUMO

Binding of Escherichia coli signal recognition particle (SRP) to its receptor, FtsY, requires the presence of 4.5S RNA, although FtsY alone does not interact with 4.5S RNA. In this study, we report that the exchange of the GGAA tetraloop sequence in domain IV of 4.5S RNA for UUCG abolishes SRP-FtsY interaction, as determined by gel retardation and membrane targeting experiments, whereas replacements with other GNRA-type tetraloops have no effect. A number of other base exchanges in the tetraloop sequence have minor or intermediate inhibitory effects. Base pair disruptions in the stem adjacent to the tetraloop or replacement of the closing C-G base pair with G-C partially restored function of the otherwise inactive UUCG mutant. Chemical probing by hydroxyl radical cleavage of 4.5S RNA variants show that replacing GGAA with UUCG in the tetraloop sequence leads to structural changes both within the tetraloop and in the adjacent stem; the latter change is reversed upon reverting the C-G closing base pair to G-C. These results show that the SRP-FtsY interaction is strongly influenced by the structure of the tetraloop region of SRP RNA, in particular the tetraloop stem, and suggest that both SRP RNA and Ffh undergo mutual structural adaptation to form SRP that is functional in the interaction with the receptor, FtsY.


Assuntos
Proteínas de Bactérias/metabolismo , Proteínas de Escherichia coli , RNA Ribossômico/metabolismo , Receptores Citoplasmáticos e Nucleares/metabolismo , Partícula de Reconhecimento de Sinal/metabolismo , Substituição de Aminoácidos , Proteínas de Bactérias/genética , Pareamento de Bases , Sequência de Bases , Sobrevivência Celular , Eletroforese em Gel de Poliacrilamida , Escherichia coli/genética , Escherichia coli/crescimento & desenvolvimento , Mutação , Plasmídeos , RNA Bacteriano , RNA Ribossômico/genética , Receptores Citoplasmáticos e Nucleares/genética , Ribossomos/genética , Ribossomos/metabolismo , Partícula de Reconhecimento de Sinal/química , Partícula de Reconhecimento de Sinal/genética
12.
J Mol Microbiol Biotechnol ; 3(1): 135-42, 2001 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-11200226

RESUMO

K88 fimbriae are ordered polymeric protein structures at the surface of enterotoxigenic Escherichia coli cells. Their production and assembly requires a molecular chaperone located in the periplasm (FaeE) and a molecular usher located in the outer membrane (FaeD). FaeC is the tip component of the K88 fimbriae. We studied the expression of the subcloned faeC gene, the subcellular localization of FaeC and its interaction with the chaperone and the outer membrane usher. In the absence of the chaperone or the usher, FaeC could not be detected in E. coli cells harbouring the faeC gene and its ribosome binding site under contol of the IPTG inducible lpp/lac promoter/operator. The expression of FaeC was detectable in the presence of chaperone FaeE, but a direct interaction between the chaperone and FaeC was not found. The expression of FaeC was also detectable in cells co-expressing the outer membrane usher FaeD. Overexpression of FaeC after changing the faeC ribosome binding site appeared to induce lethality. Expression of subcloned FaeC in the absence of FaeE or FaeD could be detected when faeC was cloned under the tight control of the ara promoter/operator and when lethality induction was avoided. The direct interaction of FaeC with outer membranes containing the usher FaeD was studied by cell fractionation, isopycnic sucrose density gradient centrifugation, SDS-PAGE and immunoblotting. FaeC was found to bind to outer membranes containing FaeD or a FaeD-PhoA hybrid construct containing 215 amino-terminal residues of FaeD. This binding was not observed when control outer membranes without FaeD were used. No other K88 specific proteins were required for this interaction. The direct interaction between FaeC and FaeD in the outer membranes was shown by affinity blotting experiments. FaeE was not required for this interaction. Together these data indicate that the minor fimbrial subunit FaeC, unlike FaeG, H and F, does not have a strong interaction with the chaperone FaeE in the E. coli periplasm, but directly binds to the outer membrane molecular usher FaeD.


Assuntos
Antígenos de Bactérias , Antígenos de Superfície/biossíntese , Proteínas da Membrana Bacteriana Externa/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas de Escherichia coli , Proteínas de Fímbrias , Chaperonas Moleculares/metabolismo , Sequência de Aminoácidos , Clonagem Molecular , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Dados de Sequência Molecular , Periplasma
13.
FEBS Lett ; 476(3): 229-33, 2000 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-10913619

RESUMO

Targeting and assembly of the Escherichia coli inner membrane protein leader peptidase (Lep) was studied using a homologous in vitro targeting/translocation assay. Assembly of full-length Lep was efficient in the co-translational presence of membrane vesicles and hardly occurred when membranes were added post-translationally. This is consistent with the signal recognition particle-dependent targeting of Lep. Crosslinking experiments showed that the hydrophilic region P1 of nascent membrane-inserted Lep 100-mer was in the vicinity of SecA and SecY, whereas the first transmembrane domain H1 was in the vicinity of YidC. These results suggested that YidC, together with the Sec translocase, functions in the assembly of Lep. YidC might be a more generic component in the assembly of inner membrane proteins.


Assuntos
Proteínas de Bactérias/metabolismo , Proteínas de Escherichia coli , Escherichia coli/metabolismo , Proteínas de Membrana/metabolismo , Proteínas de Membrana Transportadoras , Serina Endopeptidases/metabolismo , Adenosina Trifosfatases/química , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Transporte/química , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Membrana Celular/metabolismo , Reagentes de Ligações Cruzadas , Escherichia coli/genética , Proteínas de Membrana/química , Proteínas de Membrana/genética , Modelos Moleculares , Biossíntese de Proteínas , Estrutura Terciária de Proteína , Canais de Translocação SEC , Proteínas SecA , Serina Endopeptidases/química , Serina Endopeptidases/genética , Partícula de Reconhecimento de Sinal
14.
J Bacteriol ; 182(14): 4108-12, 2000 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-10869093

RESUMO

We have used Escherichia coli alkaline phosphatase to show the interplay among the characteristics of two amino-terminal domains in the preprotein (the signal peptide and the early mature region), the efficiency with which this protein is transported, and its requirement for SecB to accomplish the transport process. The results suggest that although alkaline phosphatase does not normally require SecB for transport, it is inherently able to utilize SecB, and it does so when its ability to interface with the transport machinery is compromised.


Assuntos
Fosfatase Alcalina/metabolismo , Proteínas de Bactérias/metabolismo , Sinais Direcionadores de Proteínas/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Transporte Biológico , Escherichia coli , Dados de Sequência Molecular
15.
EMBO J ; 19(4): 531-41, 2000 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-10675322

RESUMO

FtsY, the Escherichia coli homologue of the eukaryotic signal recognition particle (SRP) receptor alpha-subunit, is located in both the cytoplasm and inner membrane. It has been proposed that FtsY has a direct targeting function, but the mechanism of its association with the membrane is unclear. FtsY is composed of two hydrophilic domains: a highly charged N-terminal domain (the A-domain) and a C-terminal GTP-binding domain (the NG-domain). FtsY does not contain any hydrophobic sequence that might explain its affinity for the inner membrane, and a membrane-anchoring protein has not been detected. In this study, we provide evidence that FtsY interacts directly with E.coli phospholipids, with a preference for anionic phospholipids. The interaction involves at least two lipid-binding sites, one of which is present in the NG-domain. Lipid association induced a conformational change in FtsY and greatly enhanced its GTPase activity. We propose that lipid binding of FtsY is important for the regulation of SRP-mediated protein targeting.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , GTP Fosfo-Hidrolases/química , GTP Fosfo-Hidrolases/metabolismo , Fosfolipídeos/química , Fosfolipídeos/metabolismo , Receptores Citoplasmáticos e Nucleares/química , Receptores Citoplasmáticos e Nucleares/metabolismo , Ânions , Sítios de Ligação , Membrana Celular/metabolismo , Escherichia coli/metabolismo , Guanosina Difosfato/farmacologia , Guanosina Trifosfato/farmacologia , Lipossomos , Ligação Proteica , Conformação Proteica , Estrutura Terciária de Proteína , Partícula de Reconhecimento de Sinal/química , Partícula de Reconhecimento de Sinal/metabolismo , Eletricidade Estática
16.
EMBO J ; 19(4): 542-9, 2000 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-10675323

RESUMO

In Escherichia coli, both secretory and inner membrane proteins initially are targeted to the core SecYEG inner membrane translocase. Previous work has also identified the peripherally associated SecA protein as well as the SecD, SecF and YajC inner membrane proteins as components of the translocase. Here, we use a cross-linking approach to show that hydrophilic portions of a co-translationally targeted inner membrane protein (FtsQ) are close to SecA and SecY, suggesting that insertion takes place at the SecA/Y interface. The hydrophobic FtsQ signal anchor sequence contacts both lipids and a novel 60 kDa translocase-associated component that we identify as YidC. YidC is homologous to Saccharomyces cerevisiae Oxa1p, which has been shown to function in a novel export pathway at the mitochondrial inner membrane. We propose that YidC is involved in the insertion of hydrophobic sequences into the lipid bilayer after initial recognition by the SecAYEG translocase.


Assuntos
Adenosina Trifosfatases/química , Adenosina Trifosfatases/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Proteínas de Transporte/química , Proteínas de Transporte/metabolismo , Proteínas de Escherichia coli , Escherichia coli/metabolismo , Proteínas de Membrana Transportadoras , Proteínas Nucleares/química , Proteínas Nucleares/metabolismo , Adenosina Trifosfatases/genética , Proteínas de Bactérias/genética , Sítios de Ligação , Proteínas de Transporte/genética , Complexo IV da Cadeia de Transporte de Elétrons , Escherichia coli/genética , Proteínas Fúngicas/metabolismo , Metabolismo dos Lipídeos , Substâncias Macromoleculares , Proteínas de Membrana/química , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Mitocôndrias/metabolismo , Proteínas Mitocondriais , Modelos Biológicos , Modelos Moleculares , Mutagênese Sítio-Dirigida , Proteínas Nucleares/genética , Canais de Translocação SEC , Saccharomyces cerevisiae/metabolismo , Proteínas SecA
17.
J Biol Chem ; 274(42): 29883-8, 1999 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-10514469

RESUMO

In Escherichia coli, signal recognition particle (SRP)-dependent targeting of inner membrane proteins has been described. In vitro cross-linking studies have demonstrated that short nascent chains exposing a highly hydrophobic targeting signal interact with the SRP. This SRP, assisted by its receptor, FtsY, mediates the transfer to a common translocation site in the inner membrane that contains SecA, SecG, and SecY. Here we describe a further in vitro reconstitution of SRP-mediated membrane insertion in which purified ribosome-nascent chain-SRP complexes are targeted to the purified SecYEG complex contained in proteoliposomes in a process that requires the SRP-receptor FtsY and GTP. We found that in this system SecA and ATP are dispensable for both the transfer of the nascent inner membrane protein FtsQ to SecY and its stable membrane insertion. Release of the SRP from nascent FtsQ also occurred in the absence of SecYEG complex indicating a functional interaction of FtsY with lipids. These data suggest that SRP/FtsY and SecB/SecA constitute distinct targeting routes.


Assuntos
Adenosina Trifosfatases/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas de Escherichia coli , Proteínas de Membrana/metabolismo , Proteínas de Membrana Transportadoras , Partícula de Reconhecimento de Sinal/metabolismo , Transporte Biológico , Membrana Celular/metabolismo , Guanosina Trifosfato/metabolismo , Proteolipídeos , Receptores Citoplasmáticos e Nucleares/metabolismo , Canais de Translocação SEC , Proteínas SecA
18.
J Biol Chem ; 274(29): 20068-70, 1999 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-10400614

RESUMO

ProW is an Escherichia coli inner membrane protein that consists of a 100-residue-long periplasmic N-terminal tail (N-tail) followed by seven closely spaced transmembrane segments. N-tail translocation presumably proceeds in a C-to-N-terminal direction and represents a poorly understood aspect of membrane protein biogenesis. Here, using an in vivo depletion approach, we show that N-tail translocation in a ProW derivative comprising the N-tail and the first transmembrane segment fused to the globular P2 domain of leader peptidase depends both on the bacterial signal recognition particle (SRP) and the Sec-translocase. Surprisingly, however, a deletion construct with only one transmembrane segment downstream of the N-tail can assemble properly even under severe depletion of SecE, a central component of the Sec-translocase, but not under SRP-depletion conditions. To our knowledge, this is the first demonstration that the SRP-targeting pathway does not necessarily deliver SRP-dependent inner membrane proteins to the Sec-translocase. The data further suggest that N-tail translocation can proceed in the absence of a functional Sec-translocase.


Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Proteínas de Bactérias , Proteínas de Escherichia coli , Escherichia coli/enzimologia , Proteínas de Membrana/metabolismo , Partícula de Reconhecimento de Sinal/metabolismo , Transportadores de Cassetes de Ligação de ATP/química , Transporte Biológico , Proteínas de Membrana/química
19.
Mol Microbiol ; 31(3): 983-93, 1999 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-10048040

RESUMO

The genes ftsE and ftsX are organized in one operon together with ftsY. FtsY codes for the receptor of the signal recognition particle (SRP) that functions in targeting a subset of inner membrane proteins. We have found no indications for a structural relationship between FtsE/X and FtsY. Evidence is presented that FtsE and FtsX form a complex in the inner membrane that bears the characteristics of an ATP-binding cassette (ABC)-type transporter. FtsE is a hydrophilic nucleotide-binding protein that has a tendency to dimerize and associates with the inner membrane through an interaction with the integral membrane protein FtsX. An FtsE null mutant showed filamentous growth and appeared viable on high salt medium only, indicating a role for FtsE in cell division and/or salt transport.


Assuntos
Transportadores de Cassetes de Ligação de ATP , Proteínas de Bactérias/genética , Proteínas de Ciclo Celular/genética , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Proteínas de Escherichia coli , Escherichia coli/genética , Proteínas de Bactérias/análise , Proteínas de Ciclo Celular/análise , Sobrevivência Celular , Regulador de Condutância Transmembrana em Fibrose Cística/análise , Desoxirribodipirimidina Fotoliase/metabolismo , Relação Dose-Resposta a Droga , Regulação Bacteriana da Expressão Gênica , Immunoblotting , Mutagênese , Testes de Precipitina , Cloreto de Sódio/farmacologia , Compostos de Sódio/farmacologia , Frações Subcelulares , Temperatura , Fatores de Tempo , Ureia/farmacologia
20.
J Mol Microbiol Biotechnol ; 1(2): 319-25, 1999 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-10943563

RESUMO

To analyse the outer membrane folding of the molecular usher FaeD, tagged derivatives were prepared and their expression, tag-localisation and functioning in K88 fimbriae biosynthesis was studied. A semi-random insertion mutagenesis approach with factor Xa cleavage sites yielded six tagged FaeD derivatives. A site-directed mutagenesis approach in which c-myc epitopes were inserted yielded twenty-one different derivatives. Four tagged FaeD constructs were not expressed in the outer membrane as full-sized proteins to levels that could be detected by using immunoblotting analyses. Two of these had an insertion in the amino-terminal part of FaeD, whereas the other two had a tag inserted in the carboxyl-terminal part. The latter ones yielded stable carboxyl-terminally shortened truncates of about 70 kDa, as did other mutations in this region. Six tagged derivatives were expressed but the location of the tag with respect to the outer membrane could not be determined, possibly due to shielding. Functional analysis showed that insertion of a tag in two regions of FaeD, a central region of approximately 200 amino acid residues (a.a. 200-400) and the carboxyl-terminal region (a.a. 600-end), resulted in a defective K88 fimbriae biosynthesis. In-frame deletions in the amino-terminal region of FaeD abolished fimbriae production. The integrity of these regions is obviously essential for fimbriae biosynthesis. Based on the results and with the aid of a computer analysis programme for the prediction of outer membrane beta-strands, a folding model with 22 membrane spanning beta-strands and two periplasmioc domains has been developed.


Assuntos
Antígenos de Bactérias , Antígenos de Superfície/biossíntese , Proteínas da Membrana Bacteriana Externa/metabolismo , Proteínas de Escherichia coli , Proteínas de Fímbrias , Fímbrias Bacterianas , Dobramento de Proteína , Sequência de Aminoácidos , Proteínas da Membrana Bacteriana Externa/genética , Epitopos , Escherichia coli , Modelos Moleculares , Dados de Sequência Molecular , Periplasma/metabolismo , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...