Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biol Chem ; 299(4): 103050, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36813233

RESUMO

Consecutive oxygenation of arachidonic acid by 5-lipoxygenase and cyclooxygenase-2 yields the hemiketal eicosanoids, HKE2 and HKD2. Hemiketals stimulate angiogenesis by inducing endothelial cell tubulogenesis in culture; however, how this process is regulated has not been determined. Here, we identify vascular endothelial growth factor receptor 2 (VEGFR2) as a mediator of HKE2-induced angiogenesis in vitro and in vivo. We found that HKE2 treatment of human umbilical vein endothelial cells dose-dependently increased the phosphorylation of VEGFR2 and the downstream kinases ERK and Akt that mediated endothelial cell tubulogenesis. In vivo, HKE2 induced the growth of blood vessels into polyacetal sponges implanted in mice. HKE2-mediated effects in vitro and in vivo were blocked by the VEGFR2 inhibitor vatalanib, indicating that the pro-angiogenic effect of HKE2 was mediated by VEGFR2. HKE2 covalently bound and inhibited PTP1B, a protein tyrosine phosphatase that dephosphorylates VEGFR2, thereby providing a possible molecular mechanism for how HKE2 induced pro-angiogenic signaling. In summary, our studies indicate that biosynthetic cross-over of the 5-lipoxygenase and cyclooxygenase-2 pathways gives rise to a potent lipid autacoid that regulates endothelial cell function in vitro and in vivo. These findings suggest that common drugs targeting the arachidonic acid pathway could prove useful in antiangiogenic therapy.


Assuntos
Araquidonato 5-Lipoxigenase , Receptor 2 de Fatores de Crescimento do Endotélio Vascular , Camundongos , Humanos , Animais , Ciclo-Oxigenase 2/metabolismo , Ácido Araquidônico , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Neovascularização Fisiológica , Células Endoteliais da Veia Umbilical Humana/metabolismo , Inibidores da Angiogênese/farmacologia , Movimento Celular , Proliferação de Células
2.
J Immunol ; 209(4): 796-805, 2022 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-35896340

RESUMO

Colonization by Helicobacter pylori is associated with gastric diseases, ranging from superficial gastritis to more severe pathologies, including intestinal metaplasia and adenocarcinoma. The interplay of the host response and the pathogen affect the outcome of disease. One major component of the mucosal response to H. pylori is the activation of a strong but inefficient immune response that fails to control the infection and frequently causes tissue damage. We have shown that polyamines can regulate H. pylori-induced inflammation. Chemical inhibition of ornithine decarboxylase (ODC), which generates the polyamine putrescine from l-ornithine, reduces gastritis in mice and adenocarcinoma incidence in gerbils infected with H. pylori However, we have also demonstrated that Odc deletion in myeloid cells enhances M1 macrophage activation and gastritis. Here we used a genetic approach to assess the specific role of gastric epithelial ODC during H. pylori infection. Specific deletion of the gene encoding for ODC in gastric epithelial cells reduces gastritis, attenuates epithelial proliferation, alters the metabolome, and downregulates the expression of immune mediators induced by H. pylori Inhibition of ODC activity or ODC knockdown in human gastric epithelial cells dampens H. pylori-induced NF-κB activation, CXCL8 mRNA expression, and IL-8 production. Chronic inflammation is a major risk factor for the progression to more severe pathologies associated with H. pylori infection, and we now show that epithelial ODC plays an important role in mediating this inflammatory response.


Assuntos
Adenocarcinoma , Gastrite , Infecções por Helicobacter , Helicobacter pylori , Adenocarcinoma/metabolismo , Animais , Células Epiteliais/metabolismo , Mucosa Gástrica/patologia , Helicobacter pylori/metabolismo , Humanos , Inflamação/metabolismo , Camundongos , Ornitina Descarboxilase/genética , Ornitina Descarboxilase/metabolismo
3.
JCI Insight ; 7(12)2022 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-35579952

RESUMO

Macrophages play a crucial role in the inflammatory response to the human stomach pathogen Helicobacter pylori, which infects half of the world's population and causes gastric cancer. Recent studies have highlighted the importance of macrophage immunometabolism in their activation state and function. We have demonstrated that the cysteine-producing enzyme cystathionine γ-lyase (CTH) is upregulated in humans and mice with H. pylori infection. Here, we show that induction of CTH in macrophages by H. pylori promoted persistent inflammation. Cth-/- mice had reduced macrophage and T cell activation in H. pylori-infected tissues, an altered metabolome, and decreased enrichment of immune-associated gene networks, culminating in decreased H. pylori-induced gastritis. CTH is downstream of the proposed antiinflammatory molecule, S-adenosylmethionine (SAM). Whereas Cth-/- mice exhibited gastric SAM accumulation, WT mice treated with SAM did not display protection against H. pylori-induced inflammation. Instead, we demonstrated that Cth-deficient macrophages exhibited alterations in the proteome, decreased NF-κB activation, diminished expression of macrophage activation markers, and impaired oxidative phosphorylation and glycolysis. Thus, through altering cellular respiration, CTH is a key enhancer of macrophage activation, contributing to a pathogenic inflammatory response that is the universal precursor for the development of H. pylori-induced gastric disease.


Assuntos
Infecções por Helicobacter , Helicobacter pylori , Animais , Cistationina gama-Liase/genética , Cistationina gama-Liase/metabolismo , Inflamação/metabolismo , Macrófagos/metabolismo , Camundongos
4.
NPJ Sci Food ; 6(1): 4, 2022 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-35031622

RESUMO

The identification of molecular targets of bioactive food components is important to understand the mechanistic aspect of their physiological functions. Here, we have developed a screening system that enables us to determine the activation of G protein-coupled receptors (GPCRs) by food components and have identified GPR55 as a target for curcumin. Curcumin activated GPR55 and induced serum-response element- and serum-response factor-mediated transcription, which were inhibited by Rho kinase and GPR55 antagonists. Both the methoxy group and the heptadienone moiety of curcumin were required for GPR55 activation. The F1905.47 residue of GPR55 was important for the interaction with curcumin. The curcumin-induced secretion of glucagon-like peptide-1 in GLUTag cells was inhibited by a GPR55 antagonist. These results indicate that expression screening is a useful system to identify GPCRs as targets of food components and strongly suggest that curcumin activates GPR55 as an agonist, which is involved in the physiological function of curcumin.

5.
Biochem Biophys Res Commun ; 595: 41-46, 2022 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-35093639

RESUMO

Curcumin is a yellow pigment in turmeric (Curcuma longa) with various physiological effects in the body. To elucidate the molecular mechanisms by which bioactive compounds exert their function, identification of their molecular targets is crucial. In this study, we show that curcumin activates G protein-coupled receptor 97 (GPR97). Curcumin dose-dependently activated serum-response element-, but not serum-response factor-response element-, nuclear factor of activated T-cell-response element-, or cAMP-response element-, mediated transcription in cells overexpressed with GPR97. The structure-activity relationship indicated that (i) the double-bonds of the central 7-carbon chain were essential for activation; (ii) a methoxy group on the aromatic ring was required for maximal activity; (iii) the addition of glucuronic acid moiety or a methoxy group to the aromatic ring, but not the methylation of the aromatic p-hydroxy group, eliminated the activity; (iv) the stability of curcumin would be related to receptor activation. Both mutant GPR97(T250A) lacking the cleavage at GPCR proteolysis site and mutant GPR97(ΔN) lacking the N-terminal extracellular region were activated by curcumin and its related compounds similar to wild-type GPR97. In contrast, the synthetic glucocorticoid beclomethasone dipropionate and l-Phe activated wild-type GPR97 and GPR97(T250A), but not GPR97(ΔN). Moreover, curcumin exerted an additive effect on the activation of wild-type GPR97 with beclomethasone dipropionate, but not with l-Phe. Taken together, these results indicate that curcumin activates GPR97 coupled to Gi/Go subunit, and suggest that curcumin and glucocorticoid activate GPR97 in a different manner.


Assuntos
Beclometasona/farmacologia , Curcumina/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Receptores Acoplados a Proteínas G/genética , Beclometasona/química , Curcuma/química , Curcumina/química , Curcumina/metabolismo , Glucocorticoides/química , Glucocorticoides/farmacologia , Células HEK293 , Humanos , Luciferases/genética , Luciferases/metabolismo , Estrutura Molecular , Mutação , Isoformas de Proteínas/química , Isoformas de Proteínas/metabolismo , Isoformas de Proteínas/farmacologia , Receptores Acoplados a Proteínas G/metabolismo , Elementos de Resposta/genética , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Relação Estrutura-Atividade
6.
J Nutr Biochem ; 99: 108842, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34407450

RESUMO

TGFß signaling promotes progression of bone-metastatic (BMET) breast cancer (BCa) cells by driving tumor-associated osteolysis, a hallmark of BCa BMETs, thus allowing for tumor expansion within bone. Turmeric-derived bioactive curcumin, enriched in bone via local enzymatic deconjugation of inactive circulating curcumin-glucuronides, inhibits osteolysis and BMET progression in human xenograft BCa BMET models by blocking tumoral TGFß signaling pathways mediating osteolysis. This is a unique antiosteolytic mechanism in contrast to current osteoclast-targeting therapeutics. Therefore, experiments were undertaken to elucidate the mechanism for curcumin inhibition of BCa TGFß signaling and the application of this finding across multiple BCa cell lines forming TGFß-dependent BMETs, including a possible role for bioactive curcumin metabolites in mediating these effects. Immunoblot analysis of TGFß signaling proteins in bone tropic human (MDA-SA, MDA-1833, MDA-2287) and murine (4T1) BCa cells revealed uniform curcumin blockade of TGFß-induced Smad activation due to down-regulation of plasma membrane associated TGFßR2 and cellular receptor Smad proteins that propagate Smad-mediated gene expression, resulting in downregulation of PTHrP expression, the osteolytic factor driving in vivo BMET progression. With the exception of early decreases in TGFßR2, inhibitory effects appeared to be mediated by oxidative metabolites of curcumin and involved inhibition of gene expression. Interestingly, while not contributing to changes in Smad-mediated TGFß signaling, curcumin caused early activation of MAPK signaling in all cell lines, including JNK, an effect possibly involving interactions with TGFßR2 within lipid rafts. Treatment with curcumin or oxidizable analogs of curcumin may have clinical relevancy in the management of TGFß-dependent BCa BMETs.


Assuntos
Neoplasias Ósseas/prevenção & controle , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Curcumina/administração & dosagem , Fator de Crescimento Transformador beta1/metabolismo , Animais , Neoplasias Ósseas/genética , Neoplasias Ósseas/metabolismo , Neoplasias Ósseas/secundário , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Curcumina/química , Feminino , Humanos , Camundongos , Oxirredução , Receptor do Fator de Crescimento Transformador beta Tipo II/genética , Receptor do Fator de Crescimento Transformador beta Tipo II/metabolismo , Transdução de Sinais/efeitos dos fármacos , Proteínas Smad/genética , Proteínas Smad/metabolismo , Fator de Crescimento Transformador beta1/genética
7.
Gastroenterology ; 162(3): 813-827.e8, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34767785

RESUMO

BACKGROUND & AIMS: Because inflammatory bowel disease is increasing worldwide and can lead to colitis-associated carcinoma (CAC), new interventions are needed. We have shown that spermine oxidase (SMOX), which generates spermidine (Spd), regulates colitis. Here we determined whether Spd treatment reduces colitis and carcinogenesis. METHODS: SMOX was quantified in human colitis and associated dysplasia using quantitative reverse-transcription polymerase chain reaction and immunohistochemistry. We used wild-type (WT) and Smox-/- C57BL/6 mice treated with dextran sulfate sodium (DSS) or azoxymethane (AOM)-DSS as models of colitis and CAC, respectively. Mice with epithelial-specific deletion of Apc were used as a model of sporadic colon cancer. Animals were supplemented or not with Spd in the drinking water. Colonic polyamines, inflammation, tumorigenesis, transcriptomes, and microbiomes were assessed. RESULTS: SMOX messenger RNA levels were decreased in human ulcerative colitis tissues and inversely correlated with disease activity, and SMOX protein was reduced in colitis-associated dysplasia. DSS colitis and AOM-DSS-induced dysplasia and tumorigenesis were worsened in Smox-/- vs WT mice and improved in both genotypes with Spd. Tumor development caused by Apc deletion was also reduced by Spd. Smox deletion and AOM-DSS treatment were both strongly associated with increased expression of α-defensins, which was reduced by Spd. A shift in the microbiome, with reduced abundance of Prevotella and increased Proteobacteria and Deferribacteres, occurred in Smox-/- mice and was reversed with Spd. CONCLUSIONS: Loss of SMOX is associated with exacerbated colitis and CAC, increased α-defensin expression, and dysbiosis of the microbiome. Spd supplementation reverses these phenotypes, indicating that it has potential as an adjunctive treatment for colitis and chemopreventive for colon carcinogenesis.


Assuntos
Carcinogênese/efeitos dos fármacos , Carcinogênese/genética , Colite/genética , Neoplasias do Colo/genética , Oxirredutases atuantes sobre Doadores de Grupo CH-NH/genética , Espermidina/uso terapêutico , Proteína da Polipose Adenomatosa do Colo/genética , Animais , Azoximetano , Colite/induzido quimicamente , Colite/enzimologia , Colite/prevenção & controle , Colite Ulcerativa/enzimologia , Colite Ulcerativa/genética , Colo/enzimologia , Colo/patologia , Neoplasias do Colo/prevenção & controle , Sulfato de Dextrana , Microbioma Gastrointestinal/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Mucosa Intestinal/enzimologia , Mucosa Intestinal/patologia , Masculino , Camundongos , Oxirredutases atuantes sobre Doadores de Grupo CH-NH/metabolismo , Lesões Pré-Cancerosas/enzimologia , Fatores de Proteção , RNA Mensageiro/metabolismo , Índice de Gravidade de Doença , Espermidina/metabolismo , Espermidina/farmacologia , Redução de Peso/efeitos dos fármacos , alfa-Defensinas/genética , alfa-Defensinas/metabolismo , Poliamina Oxidase
8.
Front Cell Infect Microbiol ; 11: 765842, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35004346

RESUMO

Curcumin is a potential natural remedy for preventing Helicobacter pylori-associated gastric inflammation and cancer. Here, we analyzed the effect of a phospholipid formulation of curcumin on H. pylori growth, translocation and phosphorylation of the virulence factor CagA and host protein kinase Src in vitro and in an in vivo mouse model of H. pylori infection. Growth of H. pylori was inhibited dose-dependently by curcumin in vitro. H. pylori was unable to metabolically reduce curcumin, whereas two enterobacteria, E. coli and Citrobacter rodentium, which efficiently reduced curcumin to the tetra- and hexahydro metabolites, evaded growth inhibition. Oxidative metabolism of curcumin was required for the growth inhibition of H. pylori and the translocation and phosphorylation of CagA and cSrc, since acetal- and diacetal-curcumin that do not undergo oxidative transformation were ineffective. Curcumin attenuated mRNA expression of the H. pylori virulence genes cagE and cagF in a dose-dependent manner and inhibited translocation and phosphorylation of CagA in gastric epithelial cells. H. pylori strains isolated from dietary curcumin-treated mice showed attenuated ability to induce cSrc phosphorylation and the mRNA expression of the gene encoding for IL-8, suggesting long-lasting effects of curcumin on the virulence of H. pylori. Our work provides mechanistic evidence that encourages testing of curcumin as a dietary approach to inhibit the virulence of CagA.


Assuntos
Curcumina , Infecções por Helicobacter , Helicobacter pylori , Animais , Antígenos de Bactérias/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Curcumina/farmacologia , Células Epiteliais/metabolismo , Escherichia coli/metabolismo , Helicobacter pylori/genética , Helicobacter pylori/metabolismo , Camundongos , Fosforilação
9.
Mol Nutr Food Res ; 64(14): e2000072, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32506808

RESUMO

SCOPE: Curcumin prevents bone loss in resorptive bone diseases and inhibits osteoclast formation, a key process driving bone loss. Curcumin circulates as an inactive glucuronide that can be deconjugated in situ by bone's high ß-glucuronidase (GUSB) content, forming the active aglycone. Because curcumin is a common remedy for musculoskeletal disease, effects of microenvironmental changes consequent to skeletal development or disease on bone curcumin metabolism are explored. METHODS AND RESULTS: Across sexual/skeletal development or between sexes in C57BL/6 mice ingesting curcumin (500 mg kg-1 ), bone curcumin metabolism and GUSB enzyme activity are unchanged, except for >twofold higher (p < 0.05) bone curcumin-glucuronide substrate levels in immature (4-6-week-old) mice. In ovariectomized (OVX) or bone metastasis-bearing female mice, bone substrate levels are also >twofold higher. Aglycone curcumin levels tend to increase proportional to substrate such that the majority of glucuronide distributing to bone is deconjugated, including OVX mice where GUSB decreases by 24% (p < 0.01). GUSB also catalyzes deconjugation of resveratrol and quercetin glucuronides by bone, and a requirement for the aglycones for anti-osteoclastogenic bioactivity, analogous to curcumin, is confirmed. CONCLUSION: Dietary polyphenols circulating as glucuronides may require in situ deconjugation for bone-protective effects, a process influenced by bone microenvironmental changes.


Assuntos
Osso e Ossos/efeitos dos fármacos , Osso e Ossos/metabolismo , Curcumina/farmacocinética , Polifenóis/farmacologia , Envelhecimento , Animais , Neoplasias Ósseas/tratamento farmacológico , Neoplasias Ósseas/metabolismo , Neoplasias Ósseas/secundário , Curcumina/administração & dosagem , Curcumina/análogos & derivados , Curcumina/metabolismo , Feminino , Glucuronidase/metabolismo , Glucuronídeos/farmacocinética , Masculino , Camundongos Endogâmicos C57BL , Osteogênese/efeitos dos fármacos , Osteogênese/fisiologia , Osteólise/tratamento farmacológico , Osteólise/metabolismo , Osteoporose/tratamento farmacológico , Osteoporose/metabolismo , Ovariectomia , Polifenóis/farmacocinética , Quercetina/farmacologia
10.
J Agric Food Chem ; 68(22): 6154-6160, 2020 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-32378408

RESUMO

Turmeric extract, a mixture of curcumin and its demethoxy (DMC) and bisdemethoxy (BDMC) isomers, is used as an anti-inflammatory preparation in traditional Asian medicine. Curcumin is considered to be the major bioactive compound in turmeric but less is known about the relative anti-inflammatory potency and mechanism of the other components, their mixture, or the reduced in vivo metabolites. We quantified inhibition of the NF-κB pathway in cells, adduction to a peptide mimicking IκB kinase ß, and the role of cellular glutathione as a scavenger of electrophilic curcuminoid oxidation products, suggested to be the active metabolites. Turmeric extracts (IC50 14.5 ± 2.9 µM), DMC (IC50 12.1 ± 7.2 µM), and BDMC (IC50 8.3 ± 1.6 µM), but not reduced curcumin, inhibited NF-κB similar to curcumin (IC50 18.2 ± 3.9 µM). Peptide adduction was formed with turmeric and DMC but not with BDMC, and this correlated with their oxidative degradation. Inhibition of glutathione biosynthesis enhanced the activity of DMC but not BDMC in the cellular assay. These findings suggest that NF-κB inhibition by curcumin and DMC involves their oxidation to reactive electrophiles, whereas BDMC does not require oxidation. Because it has not been established whether curcumin undergoes oxidative transformation in vivo, oxidation-independent BDMC may be a promising alternative to test in clinical trials.


Assuntos
Curcuma/química , Diarileptanoides/química , NF-kappa B/antagonistas & inibidores , Extratos Vegetais/química , Animais , Linhagem Celular , Curcumina/química , Curcumina/farmacologia , Diarileptanoides/farmacologia , Humanos , Cinética , NF-kappa B/metabolismo , Oxirredução/efeitos dos fármacos , Extratos Vegetais/farmacologia
11.
Oncogene ; 39(22): 4465-4474, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32350444

RESUMO

Helicobacter pylori infection is the main risk factor for the development of gastric cancer, the third leading cause of cancer death worldwide. H. pylori colonizes the human gastric mucosa and persists for decades. The inflammatory response is ineffective in clearing the infection, leading to disease progression that may result in gastric adenocarcinoma. We have shown that polyamines are regulators of the host response to H. pylori, and that spermine oxidase (SMOX), which metabolizes the polyamine spermine into spermidine plus H2O2, is associated with increased human gastric cancer risk. We now used a molecular approach to directly address the role of SMOX, and demonstrate that Smox-deficient mice exhibit significant reductions of gastric spermidine levels and H. pylori-induced inflammation. Proteomic analysis revealed that cancer was the most significantly altered functional pathway in Smox-/- gastric organoids. Moreover, there was also less DNA damage and ß-catenin activation in H. pylori-infected Smox-/- mice or gastric organoids, compared to infected wild-type animals or gastroids. The link between SMOX and ß-catenin activation was confirmed in human gastric organoids that were treated with a novel SMOX inhibitor. These findings indicate that SMOX promotes H. pylori-induced carcinogenesis by causing inflammation, DNA damage, and activation of ß-catenin signaling.


Assuntos
Adenocarcinoma/etiologia , Dano ao DNA , Gastrite/enzimologia , Infecções por Helicobacter/enzimologia , Helicobacter pylori/patogenicidade , Oxirredutases atuantes sobre Doadores de Grupo CH-NH/fisiologia , Espermina/metabolismo , Neoplasias Gástricas/etiologia , Adenocarcinoma/microbiologia , Animais , Transformação Celular Neoplásica , Gastrite/genética , Gastrite/microbiologia , Gastrite/patologia , Infecções por Helicobacter/genética , Infecções por Helicobacter/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Organoides , Oxirredutases atuantes sobre Doadores de Grupo CH-NH/deficiência , Oxirredutases atuantes sobre Doadores de Grupo CH-NH/genética , Proteoma , RNA Mensageiro/biossíntese , Transdução de Sinais , Espermidina/biossíntese , Neoplasias Gástricas/microbiologia , beta Catenina/fisiologia , Poliamina Oxidase
12.
Mol Nutr Food Res ; 64(6): e1901037, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31962379

RESUMO

SCOPE: The diphenol curcumin from turmeric is rapidly metabolized into phase II conjugates following oral administration, resulting in negligible plasma concentration of the free compound, which is considered the bioactive form. Total plasma concentration of curcumin is often quantified after treatment with ß-glucuronidase to hydrolyze curcumin-glucuronide, the most abundant conjugate in vivo. The efficiency of enzymatic hydrolysis has not been tested. METHODS AND RESULTS: Using liquid chromatography-mass spectrometry (LC-MS) analyses the efficiency of ß-glucuronidase and sulfatase from Helix pomatia is compared to hydrolyze curcumin conjugates in human and mouse plasma after oral administration of turmeric. Both ß-glucuronidase and sulfatase completely hydrolyze curcumin-glucuronide. Unexpectedly, ß-glucuronidase hydrolysis is incomplete, affording a large amount of curcumin-sulfate, whereas sulfatase hydrolyzed both glucuronide and sulfate conjugates. With sulfatase, the concentration of free curcumin is doubled in human and increased in mouse plasma compared to ß-glucuronidase treatment. Incomplete hydrolysis by ß-glucuronidase suggests the presence of mixed glucuronide-sulfate conjugates. LC-MS based searches detect diglucuronide, disulfate, and mixed sulfate-glucuronide and sulfate-diglucuronide conjugates in plasma that likely contribute to the increase of free curcumin upon sulfatase treatment. CONCLUSION: ß-Glucuronidase incompletely hydrolyzes complex sulfate-containing conjugates that appear to be major metabolites, resulting in an underestimation of the total plasma concentration of curcumin.


Assuntos
Curcumina/análogos & derivados , Curcumina/análise , Curcumina/farmacocinética , Glucuronidase/metabolismo , Glucuronídeos/sangue , Adulto , Animais , Feminino , Glucuronidase/química , Glucuronídeos/farmacocinética , Humanos , Hidrólise , Masculino , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade
13.
mBio ; 10(5)2019 10 29.
Artigo em Inglês | MEDLINE | ID: mdl-31662455

RESUMO

The reverse transsulfuration pathway is the major route for the metabolism of sulfur-containing amino acids. The role of this metabolic pathway in macrophage response and function is unknown. We show that the enzyme cystathionine γ-lyase (CTH) is induced in macrophages infected with pathogenic bacteria through signaling involving phosphatidylinositol 3-kinase (PI3K)/MTOR and the transcription factor SP1. This results in the synthesis of cystathionine, which facilitates the survival of pathogens within myeloid cells. Our data demonstrate that the expression of CTH leads to defective macrophage activation by (i) dysregulation of polyamine metabolism by depletion of S-adenosylmethionine, resulting in immunosuppressive putrescine accumulation and inhibition of spermidine and spermine synthesis, and (ii) increased histone H3K9, H3K27, and H3K36 di/trimethylation, which is associated with gene expression silencing. Thus, CTH is a pivotal enzyme of the innate immune response that disrupts host defense. The induction of the reverse transsulfuration pathway by bacterial pathogens can be considered an unrecognized mechanism for immune escape.IMPORTANCE Macrophages are professional immune cells that ingest and kill microbes. In this study, we show that different pathogenic bacteria induce the expression of cystathionine γ-lyase (CTH) in macrophages. This enzyme is involved in a metabolic pathway called the reverse transsulfuration pathway, which leads to the production of numerous metabolites, including cystathionine. Phagocytized bacteria use cystathionine to better survive in macrophages. In addition, the induction of CTH results in dysregulation of the metabolism of polyamines, which in turn dampens the proinflammatory response of macrophages. In conclusion, pathogenic bacteria can evade the host immune response by inducing CTH in macrophages.


Assuntos
Bactérias/imunologia , Bactérias/metabolismo , Imunidade Inata , Macrófagos/metabolismo , Redes e Vias Metabólicas/fisiologia , Enxofre/metabolismo , Animais , Bactérias/patogenicidade , Inativação Gênica , Helicobacter pylori/genética , Helicobacter pylori/metabolismo , Histonas/metabolismo , Humanos , Evasão da Resposta Imune , Imunoglobulinas , Macrófagos/microbiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Óxido Nítrico Sintase Tipo II/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Poliaminas/metabolismo , Células RAW 264.7 , Espermidina/metabolismo , Espermina/metabolismo , Fatores de Transcrição
14.
Biochimie ; 165: 250-257, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31470039

RESUMO

Curcumin shows antiglycemic effects in animals. Curcumin is chemically unstable at physiological pH, and its oxidative degradation products were shown to contribute to its anti-inflammatory effects. Since the degradation products may also contribute to other effects, we analyzed their role in the antiglycemic activity of curcumin. We quantified curcumin-induced release of glucagon-like peptide 1 (GLP-1) from mouse STC-1 cells that represent enteroendocrine L-cells as a major source of this anti-diabetic hormone. Curcumin induced secretion of GLP-1 in a dose-dependent manner. Two chemically stable analogues of curcumin that do not readily undergo degradation, were less active while two unstable analogues were active secretagogues. Chromatographically isolated spiroepoxide, an unstable oxidative metabolite of curcumin with anti-inflammatory activity, also induced secretion of GLP-1. Stable compounds like the final oxidative metabolite bicyclopentadione, and the major plasma metabolite, curcumin-glucuronide, were inactive. GLP-1 secretion induced by curcumin and its oxidative degradation products was associated with activation of PKC, ERK, and CaM kinase II. Since activity largely correlated with instability of curcumin and the analogues, we tested the extent of covalent binding to proteins in STC-1 cells and found it occurred with similar affinity as N-ethylmaleimide, indicating covalent binding occurred with nucleophilic cysteine residues. These results suggest that oxidative metabolites of curcumin are involved in the antiglycemic effects of curcumin. Our findings support the hypothesis that curcumin functions as a pro-drug requiring oxidative activation to reveal its bioactive metabolites that act by binding to target proteins thereby causing a change in function.


Assuntos
Anti-Inflamatórios não Esteroides/farmacologia , Curcumina/análogos & derivados , Curcumina/farmacologia , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Animais , Linhagem Celular Tumoral , Hipoglicemiantes/farmacologia , Oxirredução
15.
Artigo em Inglês | MEDLINE | ID: mdl-30972302

RESUMO

There is great interest in safe and effective alternative therapies that could benefit patients with inflammatory bowel diseases (IBD). L-arginine (Arg) is a semi-essential amino acid with a variety of physiological effects. In this context, our aim was to investigate the role of dietary Arg in experimental colitis. We used two models of colitis in C57BL/6 mice, the dextran sulfate sodium (DSS) model of injury and repair, and Citrobacter rodentium infection. Animals were given diets containing (1) no Arg (Arg0), 6.4 g/kg (ArgNL), or 24.6 g/kg Arg (ArgHIGH); or (2) the amino acids downstream of Arg: 28 g/kg L-ornithine (OrnHIGH) or 72 g/kg L-proline (ProHIGH). Mice with DSS colitis receiving the ArgHIGH diet had increased levels of Arg, Orn, and Pro in the colon and improved body weight loss, colon length shortening, and histological injury compared to ArgNL and Arg0 diets. Histology was improved in the ArgNL vs. Arg0 group. OrnHIGH or ProHIGH diets did not provide protection. Reduction in colitis with ArgHIGH diet also occurred in C. rodentium-infected mice. Diversity of the intestinal microbiota was significantly enhanced in mice on the ArgHIGH diet compared to the ArgNL or Arg0 diets, with increased abundance of Bacteroidetes and decreased Verrucomicrobia. In conclusion, dietary supplementation of Arg is protective in colitis models. This may occur by restoring overall microbial diversity and Bacteroidetes prevalence. Our data provide a rationale for Arg as an adjunctive therapy in IBD.


Assuntos
Arginina/administração & dosagem , Colite/patologia , Colo/microbiologia , Dieta/métodos , Infecções por Enterobacteriaceae/patologia , Microbioma Gastrointestinal , Animais , Citrobacter rodentium/crescimento & desenvolvimento , Colite/induzido quimicamente , Colo/patologia , Sulfato de Dextrana/administração & dosagem , Sulfato de Dextrana/toxicidade , Modelos Animais de Doenças , Histocitoquímica , Camundongos Endogâmicos C57BL , Resultado do Tratamento
16.
Proc Natl Acad Sci U S A ; 116(11): 5077-5085, 2019 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-30804204

RESUMO

Infection by Helicobacter pylori is the primary cause of gastric adenocarcinoma. The most potent H. pylori virulence factor is cytotoxin-associated gene A (CagA), which is translocated by a type 4 secretion system (T4SS) into gastric epithelial cells and activates oncogenic signaling pathways. The gene cagY encodes for a key component of the T4SS and can undergo gene rearrangements. We have shown that the cancer chemopreventive agent α-difluoromethylornithine (DFMO), known to inhibit the enzyme ornithine decarboxylase, reduces H. pylori-mediated gastric cancer incidence in Mongolian gerbils. In the present study, we questioned whether DFMO might directly affect H. pylori pathogenicity. We show that H. pylori output strains isolated from gerbils treated with DFMO exhibit reduced ability to translocate CagA in gastric epithelial cells. Further, we frequently detected genomic modifications in the middle repeat region of the cagY gene of output strains from DFMO-treated animals, which were associated with alterations in the CagY protein. Gerbils did not develop carcinoma when infected with a DFMO output strain containing rearranged cagY or the parental strain in which the wild-type cagY was replaced by cagY with DFMO-induced rearrangements. Lastly, we demonstrate that in vitro treatment of H. pylori by DFMO induces oxidative DNA damage, expression of the DNA repair enzyme MutS2, and mutations in cagY, demonstrating that DFMO directly affects genomic stability. Deletion of mutS2 abrogated the ability of DFMO to induce cagY rearrangements directly. In conclusion, DFMO-induced oxidative stress in H. pylori leads to genomic alterations and attenuates virulence.


Assuntos
Proteínas de Bactérias/genética , Carcinogênese/genética , Carcinogênese/patologia , Eflornitina/farmacologia , Helicobacter pylori/genética , Mutação/genética , Neoplasias Gástricas/microbiologia , Neoplasias Gástricas/patologia , Animais , Dano ao DNA , Deleção de Genes , Rearranjo Gênico , Gerbillinae , Helicobacter pylori/efeitos dos fármacos , Helicobacter pylori/patogenicidade , Masculino , Estresse Oxidativo/efeitos dos fármacos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Virulência
17.
J Nat Prod ; 82(3): 500-509, 2019 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-30794412

RESUMO

The biological basis for documented in vivo bone-protective effects of turmeric-derived curcumin is unclear since curcumin is barely detectable in serum, being rapidly conjugated to form what is thought to be an inactive glucuronide. Studies were therefore undertaken to test the postulate that antiresorptive effects of curcumin require deconjugation within bone to form the bioactive aglycone and that ß-glucuronidase (GUSB), a deconjugating enzyme expressed by hematopoietic marrow cells, facilitates this site-specific transformation. Consistent with this postulate, aglycone, but not glucuronidated, curcumin inhibited RANKL-stimulated osteoclastogenesis, a key curcumin target in bone. Aglycone curcumin, expressed relative to total curcumin, was higher in bone marrow than in serum of curcumin-treated C57BL/6J mice, while remaining a minor component. Ex vivo, under conditions preventing further metabolism of the unstable aglycone, the majority of curcumin-glucuronide delivered to marrow in vivo was hydrolyzed to the aglycone, a process that was inhibited by treatment with saccharolactone, a GUSB inhibitor, or in mice having reduced (C3H/HeJ) or absent (mps/mps) GUSB activity. These findings suggest that curcumin, despite low systemic bioavailability, may be enzymatically activated (deconjugated) within GUSB-enriched bone to exert protective effects, a metabolic process that could also contribute to bone-protective effects of other highly glucuronidated dietary polyphenols.


Assuntos
Osso e Ossos/metabolismo , Curcumina/metabolismo , Glucuronidase/metabolismo , Glucuronídeos/metabolismo , Administração Oral , Animais , Área Sob a Curva , Disponibilidade Biológica , Catálise , Curcumina/administração & dosagem , Curcumina/farmacocinética , Feminino , Meia-Vida , Camundongos , Camundongos Endogâmicos C3H , Camundongos Endogâmicos C57BL , Osteoclastos/citologia , Ligante RANK/metabolismo
18.
J Nutr Biochem ; 63: 150-156, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30393127

RESUMO

Breast cancer (BCa) bone metastases (BMETs) drive osteolysis via a feed-forward loop involving tumoral secretion of osteolytic factors (e.g., PTHrP) induced by bone-matrix-derived growth factors (e.g., TGFß). In prior experiments, turmeric-derived curcumin inhibited in vivo BMET progression and in vitro TGFß/Smad-signaling in a TGFß-stimulated PTHrP-dependent human xenograft BCa BMET model (MDA-SA cells). However, it is unclear whether curcumin or curcumin-glucuronide mediates in vivo protection since curcumin-glucuronide is the primary circulating metabolite in rodents and in humans. Thus, effects of curcumin vs. curcumin-glucuronide on Smad-dependent TGFß signaling were compared in a series of BCa cell lines forming TGFß-dependent BMET in murine models, and tissue-specific metabolism of curcumin in mice was examined by LC-MS. While curcumin inhibited TGFß-receptor-mediated Smad2/3 phosphorylation in all BCa cells studied (human MDA-SA, MDA-1833, MDA-2287 and murine 4T1 cells), curcumin-glucuronide did not. Similarly, curcumin, but not curcumin-glucuronide, blocked TGFß-stimulated secretion of PTHrP from MDA-SA and 4T1 cells. Because the predominant serum metabolite, curcumin-glucuronide, lacked bioactivity, we examined tissue-specific metabolism of curcumin in mice. Compared to serum and other organs, free curcumin (both absolute and percentage of total) was significantly increased in bone, which was also a rich source of enzymatic deglucuronidation activity. Thus, curcumin, and not curcumin-glucuronide, appears to inhibit bone-tropic BCa cell TGFß-signaling and to undergo site-specific activation (deconjugation) within the bone microenvironment. These findings suggest that circulating curcumin-glucuronide may act as a prodrug that preferentially targets bone, a process that may contribute to the bone-protective effects of curcumin and other highly glucuronidated dietary polyphenols.


Assuntos
Neoplasias Ósseas/secundário , Neoplasias da Mama/patologia , Curcumina/análogos & derivados , Curcumina/farmacologia , Glucuronídeos/farmacologia , Proteínas Smad/metabolismo , Administração Oral , Animais , Antineoplásicos Fitogênicos/administração & dosagem , Antineoplásicos Fitogênicos/farmacologia , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Curcumina/administração & dosagem , Feminino , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Proteína Relacionada ao Hormônio Paratireóideo/metabolismo , Transdução de Sinais/efeitos dos fármacos , Fator de Crescimento Transformador beta/metabolismo
19.
J Nat Prod ; 81(12): 2756-2762, 2018 12 28.
Artigo em Inglês | MEDLINE | ID: mdl-30560664

RESUMO

Evidence that anti-inflammatory and other biological effects of curcumin may at least in part be mediated by its metabolites underscores the importance of identifying novel transformation products. Spontaneous degradation of curcumin in buffer pH 7.5 results mainly in dioxygenated products with a characteristic cyclopentadione ring composed of carbons 2 through 6 of the former heptadienedione chain. When analyzing degradation reactions of 4'- O-methylcurcumin, a product was identified missing one of the terminal carbons of the heptadienedione moiety while containing a cyclopentadione ring and adjacent hydroxy group typical of curcumin degradation products. Analysis of curcumin autoxidation reactions showed formation of an analogous compound, 7-norcyclopentadione, a degradation product exhibiting net loss of a carbon and gain of an oxygen atom. Removal of the carbon is proposed to occur via a peroxide-linked curcumin dimer in conjunction with radical-mediated 1,2-aryl migration of a guaiacol moiety. Oxidation reactions of demethoxycurcumin gave demethoxy-7-norcyclopentadione, whereas an analogous product was not observed from bis-demethoxycurcumin. Incubation of RAW264.7 macrophage-like cells with curcumin showed the presence of 7-norcyclopentadione, the formation of which was not increased upon activation of the cells with 12- O-tetradecanoylphorbol-13-acetate . 7-Norcyclopentadione is a novel type of degradation product that is most likely formed via autoxidative processes when cells are incubated with curcumin.


Assuntos
Curcumina/química , Ciclopentanos/química , Animais , Anti-Inflamatórios não Esteroides/química , Carbono/química , Espectroscopia de Ressonância Magnética , Camundongos , Estrutura Molecular , Células RAW 264.7
20.
Cancer Res ; 78(15): 4303-4315, 2018 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-29853605

RESUMO

Ornithine decarboxylase (ODC) is the rate-limiting enzyme for polyamine biosynthesis and restricts M1 macrophage activation in gastrointestinal (GI) infections. However, the role of macrophage ODC in colonic epithelial-driven inflammation is unknown. Here, we investigate cell-specific effects of ODC in colitis and colitis-associated carcinogenesis (CAC). Human colonic macrophages expressed increased ODC levels in active ulcerative colitis and Crohn's disease, colitis-associated dysplasia, and CAC. Mice lacking Odc in myeloid cells (OdcΔmye mice) that were treated with dextran sulfate sodium (DSS) exhibited improved survival, body weight, and colon length and reduced histologic injury versus control mice. In contrast, GI epithelial-specific Odc knockout had no effect on clinical parameters. Despite reduced histologic damage, colitis tissues of OdcΔmye mice had increased levels of multiple proinflammatory cytokines and chemokines and enhanced expression of M1, but not M2 markers. In the azoxymethane-DSS model of CAC, OdcΔmye mice had reduced tumor number, burden, and high-grade dysplasia. Tumors from OdcΔmye mice had increased M1, but not M2 macrophages. Increased levels of histone 3, lysine 9 acetylation, a marker of open chromatin, were manifest in tumor macrophages of OdcΔmye mice, consistent with our findings that macrophage ODC affects histone modifications that upregulate M1 gene transcription during GI infections. These findings support the concept that macrophage ODC augments epithelial injury-associated colitis and CAC by impairing the M1 responses that stimulate epithelial repair, antimicrobial defense, and antitumoral immunity. They also suggest that macrophage ODC is an important target for colon cancer chemoprevention.Significance: Ornithine decarboxylase contributes to the pathogenesis of colitis and associated carcinogenesis by impairing M1 macrophage responses needed for antitumoral immunity; targeting ODC in macrophages may represent a new strategy for chemoprevention. Cancer Res; 78(15); 4303-15. ©2018 AACR.


Assuntos
Carcinogênese/imunologia , Colite Ulcerativa/imunologia , Colo/imunologia , Neoplasias do Colo/imunologia , Macrófagos/imunologia , Ornitina Descarboxilase/imunologia , Animais , Azoximetano/farmacologia , Carcinogênese/efeitos dos fármacos , Carcinogênese/patologia , Colite Ulcerativa/patologia , Colo/patologia , Neoplasias do Colo/patologia , Citocinas/imunologia , Sulfato de Dextrana/farmacologia , Inflamação/imunologia , Inflamação/patologia , Ativação de Macrófagos/efeitos dos fármacos , Ativação de Macrófagos/imunologia , Ativação de Macrófagos/fisiologia , Macrófagos/efeitos dos fármacos , Masculino , Camundongos , Transcrição Gênica/efeitos dos fármacos , Transcrição Gênica/imunologia , Regulação para Cima/efeitos dos fármacos , Regulação para Cima/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA