Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Bio Protoc ; 14(8): e4980, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38686349

RESUMO

Precision-cut lung slices (PCLS), ex vivo 3D lung tissue models, have been widely used for various applications in lung research. PCLS serve as an excellent intermediary between in vitro and in vivo models because they retain all resident cell types within their natural niche while preserving the extracellular matrix environment. This protocol describes the TReATS (TAT-Cre recombinase-mediated floxed allele modification in tissue slices) method that enables rapid and efficient gene modification in PCLS derived from adult floxed animals. Here, we present detailed protocols for the TReATS method, consisting of two simple steps: PCLS generation and incubation in a TAT-Cre recombinase solution. Subsequent validation of gene modification involves live staining and imaging of PCLS, quantitative real-time PCR, and cell viability assessment. This four-day protocol eliminates the need for complex Cre-breeding, circumvents issues with premature lethality related to gene mutation, and significantly reduces the use of animals. The TReATS method offers a simple and reproducible solution for gene modification in complex ex vivo tissue-based models, accelerating the study of gene function, disease mechanisms, and the discovery of drug targets. Key features • Achieve permanent ex vivo gene modifications in complex tissue-based models within four days. • Highly adaptable gene modification method that can be applied to induce gene deletion or activation. • Allows simple Cre dosage testing in a controlled ex vivo setting with the advantage of using PCLS generated from the same animal as true controls. • With optimisation, this method can be applied to precision-cut tissue slices of other organs.

2.
Dis Model Mech ; 16(11)2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37828896

RESUMO

Precision-cut lung slices (PCLS) are used for a variety of applications. However, methods to manipulate genes in PCLS are currently limited. We developed a new method, TAT-Cre recombinase-mediated floxed allele modification in tissue slices (TReATS), to induce highly effective and temporally controlled gene deletion or activation in ex vivo PCLS. Treatment of PCLS from Rosa26-flox-stop-flox-EYFP mice with cell-permeant TAT-Cre recombinase induced ubiquitous EYFP protein expression, indicating successful Cre-mediated excision of the upstream loxP-flanked stop sequence. Quantitative real-time PCR confirmed induction of EYFP. We successfully replicated the TReATS method in PCLS from Vangl2flox/flox mice, leading to the deletion of loxP-flanked exon 4 of the Vangl2 gene. Cre-treated Vangl2flox/flox PCLS exhibited cytoskeletal abnormalities, a known phenotype caused by VANGL2 dysfunction. We report a new method that bypasses conventional Cre-Lox breeding, allowing rapid and highly effective gene manipulation in ex vivo tissue models.


Assuntos
Integrases , Camundongos , Animais , Camundongos Transgênicos , Alelos , Integrases/metabolismo , Fenótipo
3.
Nat Commun ; 14(1): 6062, 2023 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-37770432

RESUMO

Hematopoietic stem cells (HSCs) residing in specialized niches in the bone marrow are responsible for the balanced output of multiple short-lived blood cell lineages in steady-state and in response to different challenges. However, feedback mechanisms by which HSCs, through their niches, sense acute losses of specific blood cell lineages remain to be established. While all HSCs replenish platelets, previous studies have shown that a large fraction of HSCs are molecularly primed for the megakaryocyte-platelet lineage and are rapidly recruited into proliferation upon platelet depletion. Platelets normally turnover in an activation-dependent manner, herein mimicked by antibodies inducing platelet activation and depletion. Antibody-mediated platelet activation upregulates expression of Interleukin-1 (IL-1) in platelets, and in bone marrow extracellular fluid in vivo. Genetic experiments demonstrate that rather than IL-1 directly activating HSCs, activation of bone marrow Lepr+ perivascular niche cells expressing IL-1 receptor is critical for the optimal activation of quiescent HSCs upon platelet activation and depletion. These findings identify a feedback mechanism by which activation-induced depletion of a mature blood cell lineage leads to a niche-dependent activation of HSCs to reinstate its homeostasis.


Assuntos
Interleucina-1 , Trombocitopenia , Humanos , Interleucina-1/metabolismo , Células-Tronco Hematopoéticas/metabolismo , Medula Óssea/metabolismo , Megacariócitos , Trombocitopenia/metabolismo
4.
Elife ; 122023 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-37566453

RESUMO

Monocytes are heterogeneous innate effector leukocytes generated in the bone marrow and released into circulation in a CCR2-dependent manner. During infection or inflammation, myelopoiesis is modulated to rapidly meet the demand for more effector cells. Danger signals from peripheral tissues can influence this process. Herein we demonstrate that repetitive TLR7 stimulation via the epithelial barriers drove a potent emergency bone marrow monocyte response in mice. This process was unique to TLR7 activation and occurred independently of the canonical CCR2 and CX3CR1 axes or prototypical cytokines. The monocytes egressing the bone marrow had an immature Ly6C-high profile and differentiated into vascular Ly6C-low monocytes and tissue macrophages in multiple organs. They displayed a blunted cytokine response to further TLR7 stimulation and reduced lung viral load after RSV and influenza virus infection. These data provide insights into the emergency myelopoiesis likely to occur in response to the encounter of single-stranded RNA viruses at barrier sites.


Assuntos
Mielopoese , Receptor 7 Toll-Like , Viroses , Animais , Camundongos , Citocinas , Pulmão , Camundongos Endogâmicos C57BL , Monócitos , Receptor 7 Toll-Like/genética , Viroses/imunologia
5.
Blood ; 142(19): 1622-1632, 2023 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-37562000

RESUMO

A critical regulatory role of hematopoietic stem cell (HSC) vascular niches in the bone marrow has been implicated to occur through endothelial niche cell expression of KIT ligand. However, endothelial-derived KIT ligand is expressed in both a soluble and membrane-bound form and not unique to bone marrow niches, and it is also systemically distributed through the circulatory system. Here, we confirm that upon deletion of both the soluble and membrane-bound forms of endothelial-derived KIT ligand, HSCs are reduced in mouse bone marrow. However, the deletion of endothelial-derived KIT ligand was also accompanied by reduced soluble KIT ligand levels in the blood, precluding any conclusion as to whether the reduction in HSC numbers reflects reduced endothelial expression of KIT ligand within HSC niches, elsewhere in the bone marrow, and/or systemic soluble KIT ligand produced by endothelial cells outside of the bone marrow. Notably, endothelial deletion, specifically of the membrane-bound form of KIT ligand, also reduced systemic levels of soluble KIT ligand, although with no effect on stem cell numbers, implicating an HSC regulatory role primarily of soluble rather than membrane KIT ligand expression in endothelial cells. In support of a role of systemic rather than local niche expression of soluble KIT ligand, HSCs were unaffected in KIT ligand deleted bones implanted into mice with normal systemic levels of soluble KIT ligand. Our findings highlight the need for more specific tools to unravel niche-specific roles of regulatory cues expressed in hematopoietic niche cells in the bone marrow.


Assuntos
Células Endoteliais , Fator de Células-Tronco , Camundongos , Animais , Fator de Células-Tronco/metabolismo , Células-Tronco Hematopoéticas/metabolismo , Medula Óssea/metabolismo , Osso e Ossos , Nicho de Células-Tronco , Células da Medula Óssea/metabolismo
7.
Nat Cell Biol ; 22(12): 1399-1410, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33230302

RESUMO

Severe infections are a major stress on haematopoiesis, where the consequences for haematopoietic stem cells (HSCs) have only recently started to emerge. HSC function critically depends on the integrity of complex bone marrow (BM) niches; however, what role the BM microenvironment plays in mediating the effects of infection on HSCs remains an open question. Here, using a murine model of malaria and combining single-cell RNA sequencing, mathematical modelling, transplantation assays and intravital microscopy, we show that haematopoiesis is reprogrammed upon infection, whereby the HSC compartment turns over substantially faster than at steady-state and HSC function is drastically affected. Interferon is found to affect both haematopoietic and mesenchymal BM cells and we specifically identify a dramatic loss of osteoblasts and alterations in endothelial cell function. Osteo-active parathyroid hormone treatment abolishes infection-triggered HSC proliferation and-coupled with reactive oxygen species quenching-enables partial rescuing of HSC function.


Assuntos
Hematopoese/fisiologia , Células-Tronco Hematopoéticas/fisiologia , Malária/fisiopatologia , Nicho de Células-Tronco/fisiologia , Animais , Células da Medula Óssea/citologia , Células da Medula Óssea/metabolismo , Células da Medula Óssea/fisiologia , Células Endoteliais/citologia , Células Endoteliais/metabolismo , Células Endoteliais/fisiologia , Perfilação da Expressão Gênica/métodos , Hematopoese/efeitos dos fármacos , Hematopoese/genética , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/metabolismo , Humanos , Malária/parasitologia , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/fisiologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Osteoblastos/citologia , Osteoblastos/metabolismo , Osteoblastos/fisiologia , Hormônio Paratireóideo/farmacologia , Plasmodium berghei/fisiologia , Espécies Reativas de Oxigênio/metabolismo , Nicho de Células-Tronco/genética
8.
Exp Hematol ; 89: 26-36, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32735908

RESUMO

The coordinated differentiation of hematopoietic stem and progenitor cells (HSPCs) into the various mature blood cell types is responsible for sustaining blood and immune system homeostasis. The cell fate decisions underlying this important biological process are made at the level of single cells. Methods to trace the fate of single cells are therefore essential for understanding hematopoietic system activity in health and disease and have had a major impact on how we understand and represent hematopoiesis. Here, we discuss the basic methodologies and technical considerations for three important clonal assays: single-cell transplantation, lentiviral barcoding, and Sleeping Beauty barcoding. This perspective is a synthesis of presentations and discussions from the 2019 International Society for Experimental Hematology (ISEH) Annual Meeting New Investigator Technology Session and the 2019 ISEH Winter Webinar.


Assuntos
Rastreamento de Células/métodos , Transplante de Células/métodos , Hematologia/métodos , Hematopoese/genética , Células-Tronco Hematopoéticas/citologia , Animais , Diferenciação Celular , Linhagem da Célula/genética , Linhagem da Célula/imunologia , Congressos como Assunto , Código de Barras de DNA Taxonômico/métodos , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Hematopoese/imunologia , Células-Tronco Hematopoéticas/imunologia , Células-Tronco Hematopoéticas/virologia , Homeostase/genética , Homeostase/imunologia , Humanos , Lentivirus/genética , Lentivirus/metabolismo , Camundongos , Análise de Célula Única/métodos , Transgenes , Transposases/genética , Transposases/imunologia
9.
Cell Stem Cell ; 26(3): 299-301, 2020 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-32142657

RESUMO

Hematopoietic stem cells (HSCs) remain quiescent to preserve long-term integrity. In this issue of Cell Stem Cell, Hinge et al. (2020) and Liang et al. (2020) demonstrate that HSCs achieve this by regulating mitochondrial fission and lysosomal activity, suppressing glucose uptake, and maintaining healthy punctate mitochondria with low metabolic activity.


Assuntos
Células-Tronco Hematopoéticas , Dinâmica Mitocondrial , Divisão Celular , Autorrenovação Celular , Mitocôndrias
10.
Exp Hematol ; 77: 1-5, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31472170

RESUMO

Adult hematological malignancies, such as acute myeloid leukemia, are thought to arise through the gradual acquisition of oncogenic mutations within long-lived hematopoietic stem cells (HSCs). Genomic analysis of peripheral blood DNA has recently identified leukemia-associated genetic mutations within otherwise healthy individuals, an observation that is strongly associated with age. These genetic mutations are often found at high frequency, suggesting dominance of a mutant HSC clone. Expansion of clones carrying other mutations not associated with leukemia or larger chromosomal deletions was also observed. This clinical observation has been termed clonal hematopoiesis, a condition associated with increased risk of both hematological malignancy and cardiovascular disease. Here, we discuss the identification of clonal hematopoiesis and its implications on human health, based on the May 2019 International Society for Experimental Hematology New Investigator Committee Webinar.


Assuntos
DNA Tumoral Circulante , Neoplasias Hematológicas , Hematopoese/genética , Leucemia , Mutação , Animais , Doenças Cardiovasculares/sangue , Doenças Cardiovasculares/diagnóstico , Doenças Cardiovasculares/genética , DNA Tumoral Circulante/sangue , DNA Tumoral Circulante/genética , Neoplasias Hematológicas/sangue , Neoplasias Hematológicas/diagnóstico , Neoplasias Hematológicas/genética , Humanos , Leucemia/sangue , Leucemia/diagnóstico , Leucemia/genética
11.
Cell Stem Cell ; 22(2): 262-276.e7, 2018 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-29451855

RESUMO

Despite much work studying ex vivo multipotent stromal cells (MSCs), the identity and characteristics of MSCs in vivo are not well defined. Here, we generated a CD73-EGFP reporter mouse to address these questions and found EGFP+ MSCs in various organs. In vivo, EGFP+ mesenchymal cells were observed in fetal and adult bones at proliferative ossification sites, while in solid organs EGFP+ cells exhibited a perivascular distribution pattern. EGFP+ cells from the bone compartment could be clonally expanded ex vivo from single cells and displayed trilineage differentiation potential. Moreover, in the central bone marrow CD73-EGFP+ specifically labeled sinusoidal endothelial cells, thought to be a critical component of the hematopoietic stem cell niche. Purification and molecular characterization of this CD73-EGFP+ population revealed an endothelial subtype that also displays a mesenchymal signature, highlighting endothelial cell heterogeneity in the marrow. Thus, the CD73-EGFP mouse is a powerful tool for studying MSCs and sinusoidal endothelium.


Assuntos
5'-Nucleotidase/metabolismo , Células da Medula Óssea/metabolismo , Células Endoteliais/metabolismo , Células-Tronco Multipotentes/metabolismo , Coloração e Rotulagem , Nicho de Células-Tronco , Animais , Medula Óssea/metabolismo , Células da Medula Óssea/citologia , Condrogênese , Células Endoteliais/citologia , Feminino , Genes Reporter , Proteínas de Fluorescência Verde/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Células-Tronco Multipotentes/citologia , Especificidade de Órgãos , Células Estromais/citologia , Células Estromais/metabolismo
12.
Blood ; 131(15): 1712-1719, 2018 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-29339402

RESUMO

Although an essential role for canonical Notch signaling in generation of hematopoietic stem cells in the embryo and in thymic T-cell development is well established, its role in adult bone marrow (BM) myelopoiesis remains unclear. Some studies, analyzing myeloid progenitors in adult mice with inhibited Notch signaling, implicated distinct roles of canonical Notch signaling in regulation of progenitors for the megakaryocyte, erythroid, and granulocyte-macrophage cell lineages. However, these studies might also have targeted other pathways. Therefore, we specifically deleted, in adult BM, the transcription factor recombination signal-binding protein J κ (Rbpj), through which canonical signaling from all Notch receptors converges. Notably, detailed progenitor staging established that canonical Notch signaling is fully dispensable for all investigated stages of megakaryocyte, erythroid, and myeloid progenitors in steady state unperturbed hematopoiesis, after competitive BM transplantation, and in stress-induced erythropoiesis. Moreover, expression of key regulators of these hematopoietic lineages and Notch target genes were unaffected by Rbpj deficiency in BM progenitor cells.


Assuntos
Medula Óssea/metabolismo , Eritropoese , Mielopoese , Receptores Notch/metabolismo , Transdução de Sinais , Estresse Fisiológico , Animais , Proteína de Ligação a Sequências Sinal de Recombinação J de Imunoglobina/genética , Proteína de Ligação a Sequências Sinal de Recombinação J de Imunoglobina/metabolismo , Camundongos , Camundongos Transgênicos , Receptores Notch/genética
13.
Nature ; 554(7690): 106-111, 2018 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-29298288

RESUMO

Rare multipotent haematopoietic stem cells (HSCs) in adult bone marrow with extensive self-renewal potential can efficiently replenish all myeloid and lymphoid blood cells, securing long-term multilineage reconstitution after physiological and clinical challenges such as chemotherapy and haematopoietic transplantations. HSC transplantation remains the only curative treatment for many haematological malignancies, but inefficient blood-lineage replenishment remains a major cause of morbidity and mortality. Single-cell transplantation has uncovered considerable heterogeneity among reconstituting HSCs, a finding that is supported by studies of unperturbed haematopoiesis and may reflect different propensities for lineage-fate decisions by distinct myeloid-, lymphoid- and platelet-biased HSCs. Other studies suggested that such lineage bias might reflect generation of unipotent or oligopotent self-renewing progenitors within the phenotypic HSC compartment, and implicated uncoupling of the defining HSC properties of self-renewal and multipotency. Here we use highly sensitive tracking of progenitors and mature cells of the megakaryocyte/platelet, erythroid, myeloid and B and T cell lineages, produced from singly transplanted HSCs, to reveal a highly organized, predictable and stable framework for lineage-restricted fates of long-term self-renewing HSCs. Most notably, a distinct class of HSCs adopts a fate towards effective and stable replenishment of a megakaryocyte/platelet-lineage tree but not of other blood cell lineages, despite sustained multipotency. No HSCs contribute exclusively to any other single blood-cell lineage. Single multipotent HSCs can also fully restrict towards simultaneous replenishment of megakaryocyte, erythroid and myeloid lineages without executing their sustained lymphoid lineage potential. Genetic lineage-tracing analysis also provides evidence for an important role of platelet-biased HSCs in unperturbed adult haematopoiesis. These findings uncover a limited repertoire of distinct HSC subsets, defined by a predictable and hierarchical propensity to adopt a fate towards replenishment of a restricted set of blood lineages, before loss of self-renewal and multipotency.


Assuntos
Linhagem da Célula , Hematopoese , Células-Tronco Hematopoéticas/citologia , Células-Tronco Multipotentes/citologia , Animais , Antígenos CD34 , Linfócitos B/citologia , Plaquetas/citologia , Antígeno CD48/deficiência , Autorrenovação Celular , Células Eritroides/citologia , Feminino , Células-Tronco Hematopoéticas/metabolismo , Masculino , Megacariócitos/citologia , Camundongos , Células-Tronco Multipotentes/metabolismo , Células Mieloides/citologia , Membro 1 da Família de Moléculas de Sinalização da Ativação Linfocitária/metabolismo , Linfócitos T/citologia
14.
Exp Hematol ; 50: 22-26, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28189651

RESUMO

Hematopoietic stem cells (HSCs) reside in specialized microenvironments known as niches. The niche is essential to support HSC function and to maintain a correct balance between self-renewal and differentiation. Recent advances in defining different mesenchymal and endothelial bone marrow cell populations, as well as hematopoietic stem and progenitor cells, greatly enhanced our understanding of these niches and of the molecular mechanisms by which they regulate HSC function. In addition to the role in maintaining HSC homeostasis, the niche has also been implicated in the pathogenesis of blood disorders including hematological malignancies. Characterizing the extrinsic regulators and the cellular context in which the niches interact with HSCs will be crucial to define new strategies to enhance blood regeneration. Furthermore, a better understanding of the role of the niche in leukemia development will open new possibilities for the treatment of these disorders by using therapies aiming to target the leukemic niche specifically. To update on recent findings on this topic, the International Society for Experimental Hematology (ISEH) organized a webinar, presented by Prof. Sean J. Morrison and Dr. Simón Méndez-Ferrer and moderated by Dr. Cristina Lo Celso, entitled "The evolving view of the hematopoietic stem cell niche," which we summarize here.


Assuntos
Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/fisiologia , Nicho de Células-Tronco/fisiologia , Animais , Células da Medula Óssea/citologia , Células da Medula Óssea/fisiologia , Diferenciação Celular , Suscetibilidade a Doenças , Hematopoese , Homeostase , Humanos , Osteogênese
15.
Nat Immunol ; 17(12): 1424-1435, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27695000

RESUMO

The final stages of restriction to the T cell lineage occur in the thymus after the entry of thymus-seeding progenitors (TSPs). The identity and lineage potential of TSPs remains unclear. Because the first embryonic TSPs enter a non-vascularized thymic rudiment, we were able to directly image and establish the functional and molecular properties of embryonic thymopoiesis-initiating progenitors (T-IPs) before their entry into the thymus and activation of Notch signaling. T-IPs did not include multipotent stem cells or molecular evidence of T cell-restricted progenitors. Instead, single-cell molecular and functional analysis demonstrated that most fetal T-IPs expressed genes of and had the potential to develop into lymphoid as well as myeloid components of the immune system. Moreover, studies of embryos deficient in the transcriptional regulator RBPJ demonstrated that canonical Notch signaling was not involved in pre-thymic restriction to the T cell lineage or the migration of T-IPs.


Assuntos
Proteína de Ligação a Sequências Sinal de Recombinação J de Imunoglobina/metabolismo , Células Progenitoras Linfoides/fisiologia , Células Progenitoras Mieloides/fisiologia , Receptores Notch/metabolismo , Linfócitos T/fisiologia , Timo/imunologia , Animais , Diferenciação Celular , Linhagem da Célula , Movimento Celular , Células Cultivadas , Feto , Regulação da Expressão Gênica no Desenvolvimento , Proteína de Ligação a Sequências Sinal de Recombinação J de Imunoglobina/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Transdução de Sinais
16.
Exp Hematol ; 44(10): 908-12, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27423816

RESUMO

Hematopoietic stem cells (HSCs) reside in the bone marrow and are responsible for the lifetime maintenance of the blood and bone marrow, achieved through their differentiation into the myriad cellular components and their ability to generate additional stem cells via self-renewal. Identification of intrinsic and extrinsic factors that regulate how the HSC population is maintained over the lifespan of an organism, or those that trigger differentiation into mature hematopoietic cell types, are important goals for regenerative medicine. Recent studies have found that inflammatory signals play a role in the regulation of adult HSC homeostasis and tonic innate immune signals influence HSC development during embryogenesis. Additionally, dysregulation of inflammatory cytokines, and the consequent impact of this on hematopoietic progenitors, may be a contributing factor to the hematopoietic defects that occur during aging and in patients with bone marrow failure syndromes or blood cancers. To update recent findings on this topic, the International Society for Experimental Hematology (ISEH) organized a webinar entitled "The Role of Inflammatory Signals in Embryonic HSC Development and Adult HSC Function," which we summarize here.


Assuntos
Hematopoese , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/metabolismo , Homeostase , Transdução de Sinais , Animais , Diferenciação Celular , Proliferação de Células , Citocinas/metabolismo , Interações Hospedeiro-Patógeno , Humanos , Mediadores da Inflamação/metabolismo
17.
Nat Commun ; 7: 11075, 2016 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-27009448

RESUMO

Aged haematopoietic stem cells (HSCs) generate more myeloid cells and fewer lymphoid cells compared with young HSCs, contributing to decreased adaptive immunity in aged individuals. However, it is not known how intrinsic changes to HSCs and shifts in the balance between biased HSC subsets each contribute to the altered lineage output. Here, by analysing HSC transcriptomes and HSC function at the single-cell level, we identify increased molecular platelet priming and functional platelet bias as the predominant age-dependent change to HSCs, including a significant increase in a previously unrecognized class of HSCs that exclusively produce platelets. Depletion of HSC platelet programming through loss of the FOG-1 transcription factor is accompanied by increased lymphoid output. Therefore, increased platelet bias may contribute to the age-associated decrease in lymphopoiesis.


Assuntos
Plaquetas/metabolismo , Senescência Celular , Células-Tronco Hematopoéticas/citologia , Análise de Sequência de RNA/métodos , Análise de Célula Única/métodos , Animais , Linhagem da Célula/genética , Proliferação de Células , Feminino , Perfilação da Expressão Gênica , Células-Tronco Hematopoéticas/metabolismo , Masculino , Camundongos , Células Mieloides/citologia , Proteínas Nucleares/metabolismo , Fenótipo , Fatores de Transcrição/metabolismo
18.
Nat Cell Biol ; 18(2): 157-67, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26780297

RESUMO

Thymic T cell development is initiated from bone-marrow-derived multi potent thymus-seeding progenitors. During the early stages of thymocyte differentiation, progenitors become T cell restricted. However, the cellular environments supporting these critical initial stages of T cell development within the thymic cortex are not known. Here we use the dependence of early, c-Kit-expressing thymic progenitors on Kit ligand (KitL) to show that CD4(-)CD8(-)c-Kit(+)CD25(-) DN1-stage progenitors associate with, and depend on, the membrane-bound form of KitL (mKitL) provided by a cortex-specific KitL-expressing vascular endothelial cell (VEC) population. In contrast, the subsequent CD4(-)CD8(-)c-Kit(+)CD25(+) DN2-stage progenitors associate selectively with cortical thymic epithelial cells (cTECs) and depend on cTEC-presented mKitL. These results show that the dynamic process of early thymic progenitor differentiation is paralleled by migration-dependent change to the supporting niche, and identify VECs as a thymic niche cell, with mKitL as a critical ligand.


Assuntos
Diferenciação Celular , Movimento Celular , Células Endoteliais/metabolismo , Células-Tronco Multipotentes/metabolismo , Comunicação Parácrina , Fator de Células-Tronco/metabolismo , Nicho de Células-Tronco , Timócitos/metabolismo , Animais , Diferenciação Celular/genética , Linhagem da Célula , Movimento Celular/genética , Células Cultivadas , Técnicas de Cocultura , Regulação da Expressão Gênica no Desenvolvimento , Camundongos Transgênicos , Comunicação Parácrina/genética , Fenótipo , Transdução de Sinais , Fator de Células-Tronco/genética
19.
Cell Stem Cell ; 13(5): 535-48, 2013 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-24054998

RESUMO

In jawed vertebrates, development of an adaptive immune-system is essential for protection of the born organism against otherwise life-threatening pathogens. Myeloid cells of the innate immune system are formed early in development, whereas lymphopoiesis has been suggested to initiate much later, following emergence of definitive hematopoietic stem cells (HSCs). Herein, we demonstrate that the embryonic lymphoid commitment process initiates earlier than previously appreciated, prior to emergence of definitive HSCs, through establishment of a previously unrecognized entirely immune-restricted and lymphoid-primed progenitor. Notably, this immune-restricted progenitor appears to first emerge in the yolk sac and contributes physiologically to the establishment of lymphoid and some myeloid components of the immune-system, establishing the lymphomyeloid lineage restriction process as an early and physiologically important lineage-commitment step in mammalian hematopoiesis.


Assuntos
Células-Tronco Hematopoéticas/citologia , Animais , Diferenciação Celular/fisiologia , Células Cultivadas , Feminino , Regulação da Expressão Gênica no Desenvolvimento/genética , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Células-Tronco Hematopoéticas/metabolismo , Linfócitos/citologia , Linfócitos/metabolismo , Masculino , Camundongos , Células Mieloides/citologia , Células Mieloides/metabolismo , Reação em Cadeia da Polimerase
20.
Nature ; 502(7470): 232-6, 2013 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-23934107

RESUMO

The blood system is maintained by a small pool of haematopoietic stem cells (HSCs), which are required and sufficient for replenishing all human blood cell lineages at millions of cells per second throughout life. Megakaryocytes in the bone marrow are responsible for the continuous production of platelets in the blood, crucial for preventing bleeding--a common and life-threatening side effect of many cancer therapies--and major efforts are focused at identifying the most suitable cellular and molecular targets to enhance platelet production after bone marrow transplantation or chemotherapy. Although it has become clear that distinct HSC subsets exist that are stably biased towards the generation of lymphoid or myeloid blood cells, we are yet to learn whether other types of lineage-biased HSC exist or understand their inter-relationships and how differently lineage-biased HSCs are generated and maintained. The functional relevance of notable phenotypic and molecular similarities between megakaryocytes and bone marrow cells with an HSC cell-surface phenotype remains unclear. Here we identify and prospectively isolate a molecularly and functionally distinct mouse HSC subset primed for platelet-specific gene expression, with enhanced propensity for short- and long-term reconstitution of platelets. Maintenance of platelet-biased HSCs crucially depends on thrombopoietin, the primary extrinsic regulator of platelet development. Platelet-primed HSCs also frequently have a long-term myeloid lineage bias, can self-renew and give rise to lymphoid-biased HSCs. These findings show that HSC subtypes can be organized into a cellular hierarchy, with platelet-primed HSCs at the apex. They also demonstrate that molecular and functional priming for platelet development initiates already in a distinct HSC population. The identification of a platelet-primed HSC population should enable the rational design of therapies enhancing platelet output.


Assuntos
Plaquetas/citologia , Diferenciação Celular , Células-Tronco Hematopoéticas/citologia , Animais , Linhagem da Célula/genética , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Transplante de Células-Tronco Hematopoéticas , Células-Tronco Hematopoéticas/metabolismo , Linfócitos/citologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...