Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mov Ecol ; 11(1): 15, 2023 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-36945057

RESUMO

BACKGROUND: Movement is central to understanding the ecology of animals. The most robustly definable segments of an individual's lifetime track are its diel activity routines (DARs). This robustness is due to fixed start and end points set by a 24-h clock that depends on the individual's quotidian schedule. An analysis of day-to-day variation in the DARs of individuals, their comparisons among individuals, and the questions that can be asked, particularly in the context of lunar and annual cycles, depends on the relocation frequency and spatial accuracy of movement data. Here we present methods for categorizing the geometry of DARs for high frequency (seconds to minutes) movement data. METHODS: Our method involves an initial categorization of DARs using data pooled across all individuals. We approached this categorization using a Ward clustering algorithm that employs four scalar "whole-path metrics" of trajectory geometry: 1. net displacement (distance between start and end points), 2. maximum displacement from start point, 3. maximum diameter, and 4. maximum width. We illustrate the general approach using reverse-GPS data obtained from 44 barn owls, Tyto alba, in north-eastern Israel. We conducted a principle components analysis (PCA) to obtain a factor, PC1, that essentially captures the scale of movement. We then used a generalized linear mixed model with PC1 as the dependent variable to assess the effects of age and sex on movement. RESULTS: We clustered 6230 individual DARs into 7 categories representing different shapes and scale of the owls nightly routines. Five categories based on size and elongation were classified as closed (i.e. returning to the same roost), one as partially open (returning to a nearby roost) and one as fully open (leaving for another region). Our PCA revealed that the DAR scale factor, PC1, accounted for 86.5% of the existing variation. It also showed that PC2 captures the openness of the DAR and accounted for another 8.4% of the variation. We also constructed spatio-temporal distributions of DAR types for individuals and groups of individuals aggregated by age, sex, and seasonal quadrimester, as well as identify some idiosyncratic behavior of individuals within family groups in relation to location. Finally, we showed in two ways that DARs were significantly larger in young than adults and in males than females. CONCLUSION: Our study offers a new method for using high-frequency movement data to classify animal diel movement routines. Insights into the types and distributions of the geometric shape and size of DARs in populations may well prove to be more invaluable for predicting the space-use response of individuals and populations to climate and land-use changes than other currently used movement track methods of analysis.

2.
Epidemics ; 41: 100640, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36274569

RESUMO

We investigated the initial outbreak rates and subsequent social distancing behaviour over the initial phase of the COVID-19 pandemic across 29 Combined Statistical Areas (CSAs) of the United States. We used the Numerus Model Builder Data and Simulation Analysis (NMB-DASA) web application to fit the exponential phase of a SCLAIV+D (Susceptible, Contact, Latent, Asymptomatic infectious, symptomatic Infectious, Vaccinated, Dead) disease classes model to outbreaks, thereby allowing us to obtain an estimate of the basic reproductive number R0 for each CSA. Values of R0 ranged from 1.9 to 9.4, with a mean and standard deviation of 4.5±1.8. Fixing the parameters from the exponential fit, we again used NMB-DASA to estimate a set of social distancing behaviour parameters to compute an epidemic flattening index cflatten. Finally, we applied hierarchical clustering methods using this index to divide CSA outbreaks into two clusters: those presenting a social distancing response that was either weaker or stronger. We found cflatten to be more influential in the clustering process than R0. Thus, our results suggest that the behavioural response after a short initial exponential growth phase is likely to be more determinative of the rise of an epidemic than R0 itself.


Assuntos
COVID-19 , Humanos , COVID-19/epidemiologia , Pandemias/prevenção & controle , Distanciamento Físico , Número Básico de Reprodução , Surtos de Doenças/prevenção & controle
3.
J R Soc Interface ; 18(184): 20210648, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34814729

RESUMO

We present methods for building a Java Runtime-Alterable-Model Platform (RAMP) of complex dynamical systems. We illustrate our methods by building a multivariant SEIR (epidemic) RAMP. Underlying our RAMP is an individual-based model that includes adaptive contact rates, pathogen genetic drift, waning and cross-immunity. Besides allowing parameter values, process descriptions and scriptable runtime drivers to be easily modified during simulations, our RAMP can used within R-Studio and other computational platforms. Process descriptions that can be runtime altered within our SEIR RAMP include pathogen variant-dependent host shedding, environmental persistence, host transmission and within-host pathogen mutation and replication. They also include adaptive social distancing and adaptive application of vaccination rates and variant-valency of vaccines. We present simulation results using parameter values and process descriptions relevant to the current COVID-19 pandemic. Our results suggest that if waning immunity outpaces vaccination rates, then vaccination rollouts may fail to contain the most transmissible variants, particularly if vaccine valencies are not adapted to deal with escape mutations. Our SEIR RAMP is designed for easy use by others. More generally, our RAMP concept facilitates construction of highly flexible complex systems models of all types, which can then be easily shared as stand-alone application programs.


Assuntos
COVID-19 , Deriva Genética , Humanos , Pandemias , SARS-CoV-2 , Vacinação
4.
J Transl Med ; 19(1): 109, 2021 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-33726787

RESUMO

BACKGROUND: No versatile web app exists that allows epidemiologists and managers around the world to comprehensively analyze the impacts of COVID-19 mitigation. The http://covid-webapp.numerusinc.com/ web app presented here fills this gap. METHODS: Our web app uses a model that explicitly identifies susceptible, contact, latent, asymptomatic, symptomatic and recovered classes of individuals, and a parallel set of response classes, subject to lower pathogen-contact rates. The user inputs a CSV file of incidence and, if of interest, mortality rate data. A default set of parameters is available that can be overwritten through input or online entry, and a user-selected subset of these can be fitted to the model using maximum-likelihood estimation (MLE). Model fitting and forecasting intervals are specifiable and changes to parameters allow counterfactual and forecasting scenarios. Confidence or credible intervals can be generated using stochastic simulations, based on MLE values, or on an inputted CSV file containing Markov chain Monte Carlo (MCMC) estimates of one or more parameters. RESULTS: We illustrate the use of our web app in extracting social distancing, social relaxation, surveillance or virulence switching functions (i.e., time varying drivers) from the incidence and mortality rates of COVID-19 epidemics in Israel, South Africa, and England. The Israeli outbreak exhibits four distinct phases: initial outbreak, social distancing, social relaxation, and a second wave mitigation phase. An MCMC projection of this latter phase suggests the Israeli epidemic will continue to produce into late November an average of around 1500 new case per day, unless the population practices social-relaxation measures at least 5-fold below the level in August, which itself is 4-fold below the level at the start of July. Our analysis of the relatively late South African outbreak that became the world's fifth largest COVID-19 epidemic in July revealed that the decline through late July and early August was characterised by a social distancing driver operating at more than twice the per-capita applicable-disease-class (pc-adc) rate of the social relaxation driver. Our analysis of the relatively early English outbreak, identified a more than 2-fold improvement in surveillance over the course of the epidemic. It also identified a pc-adc social distancing rate in early August that, though nearly four times the pc-adc social relaxation rate, appeared to barely contain a second wave that would break out if social distancing was further relaxed. CONCLUSION: Our web app provides policy makers and health officers who have no epidemiological modelling or computer coding expertise with an invaluable tool for assessing the impacts of different outbreak mitigation policies and measures. This includes an ability to generate an epidemic-suppression or curve-flattening index that measures the intensity with which behavioural responses suppress or flatten the epidemic curve in the region under consideration.


Assuntos
COVID-19/epidemiologia , COVID-19/prevenção & controle , Controle de Infecções , Internet , Aplicativos Móveis , COVID-19/etiologia , COVID-19/transmissão , Simulação por Computador , Modificador do Efeito Epidemiológico , Inglaterra/epidemiologia , Epidemias , Previsões/métodos , Humanos , Controle de Infecções/métodos , Controle de Infecções/organização & administração , Controle de Infecções/normas , Israel/epidemiologia , Cadeias de Markov , Distanciamento Físico , Vigilância da População/métodos , Fatores de Risco , SARS-CoV-2/genética , África do Sul/epidemiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...