Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Ecol Evol ; 6(7): 979-988, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35618819

RESUMO

Bacteria with increased mutation rates (mutators) are common in chronic infections and are associated with poorer clinical outcomes, especially in the case of Pseudomonas aeruginosa infecting cystic fibrosis (CF) patients. There is, however, considerable between-patient variation in both P. aeruginosa mutator frequency and the composition of co-infecting pathogen communities. We investigated whether community context might affect selection of mutators. Using an in vitro CF model community, we show that P. aeruginosa mutators were favoured in the absence of other species but not in their presence. This was because there were trade-offs between adaptation to the biotic and abiotic environments (for example, loss of quorum sensing and associated toxin production was beneficial in the latter but not the former in our in vitro model community) limiting the evolvability advantage of an elevated mutation rate. Consistent with a role of co-infecting pathogens selecting against P. aeruginosa mutators in vivo, we show that the mutation frequency of P. aeruginosa population was negatively correlated with the frequency and diversity of co-infecting bacteria in CF infections. Our results suggest that co-infecting taxa can select against P. aeruginosa mutators, which may have potentially beneficial clinical consequences.


Assuntos
Coinfecção , Fibrose Cística , Infecções por Pseudomonas , Coinfecção/complicações , Fibrose Cística/complicações , Fibrose Cística/microbiologia , Humanos , Infecções por Pseudomonas/complicações , Infecções por Pseudomonas/microbiologia , Pseudomonas aeruginosa/genética , Percepção de Quorum
2.
Ecol Lett ; 24(10): 2169-2177, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34259374

RESUMO

Ecological theory predicts interactions between species to become more positive under abiotic stress, while competition should prevail in more benign environments. However, experimental tests of this stress gradient hypothesis in natural microbial communities are lacking. We test this hypothesis by measuring interactions between 10 different members of a bacterial community inhabiting potting compost in the presence or absence of toxic copper stress. We found that copper stress caused significant net changes in species interaction signs, shifting the net balance towards more positive interactions. This pattern was at least in part driven by copper-sensitive isolates - that produced relatively small amounts of metal-detoxifying siderophores - benefitting from the presence of other species that produce extracellular detoxifying agents. As well as providing support for the stress gradient hypothesis, our results highlight the importance of community-wide public goods in shaping microbial community composition.


Assuntos
Compostagem , Bactérias , Sideróforos , Estresse Fisiológico
3.
J Evol Biol ; 34(2): 246-255, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33111439

RESUMO

Spatial resource heterogeneity is expected to be a key driver for the evolution of diversity. However, direct empirical support for this prediction is limited to studies carried out in simplified laboratory environments. Here, we investigate how altering spatial heterogeneity of potting compost-by the addition of water and mixing-affects the evolutionary diversification of a bacterial species, Pseudomonas fluorescens, that is naturally found in the environment. There was a greater propensity of resource specialists to evolve in the unmanipulated compost, while more generalist phenotypes dominated the compost-water mix. Genomic data were consistent with these phenotypic findings. Competition experiments strongly suggest these results are due to diversifying selection as a result of resource heterogeneity, as opposed to other covariables. Overall, our findings corroborate theoretical and in vitro findings, but in semi-natural, more realistic conditions.


Assuntos
Evolução Biológica , Compostagem , Pseudomonas fluorescens/genética , Microbiologia do Solo , Genoma Bacteriano , Fenótipo
4.
Nature ; 574(7779): 549-552, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31645729

RESUMO

About half of all bacteria carry genes for CRISPR-Cas adaptive immune systems1, which provide immunological memory by inserting short DNA sequences from phage and other parasitic DNA elements into CRISPR loci on the host genome2. Whereas CRISPR loci evolve rapidly in natural environments3,4, bacterial species typically evolve phage resistance by the mutation or loss of phage receptors under laboratory conditions5,6. Here we report how this discrepancy may in part be explained by differences in the biotic complexity of in vitro and natural environments7,8. Specifically, by using the opportunistic pathogen Pseudomonas aeruginosa and its phage DMS3vir, we show that coexistence with other human pathogens amplifies the fitness trade-offs associated with the mutation of phage receptors, and therefore tips the balance in favour of the evolution of CRISPR-based resistance. We also demonstrate that this has important knock-on effects for the virulence of P. aeruginosa, which became attenuated only if the bacteria evolved surface-based resistance. Our data reveal that the biotic complexity of microbial communities in natural environments is an important driver of the evolution of CRISPR-Cas adaptive immunity, with key implications for bacterial fitness and virulence.


Assuntos
Bacteriófagos/genética , Bacteriófagos/imunologia , Biodiversidade , Sistemas CRISPR-Cas/genética , Evolução Molecular , Pseudomonas aeruginosa/imunologia , Pseudomonas aeruginosa/virologia , Bacteriófagos/patogenicidade , Sistemas CRISPR-Cas/imunologia , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/patogenicidade , Receptores Virais/metabolismo
5.
Sci Rep ; 9(1): 9065, 2019 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-31227753

RESUMO

A comparative genome analysis of the global anaerobic regulator Anr regulon in five species of Pseudomonas with different life style was performed. Expression of this regulator was detected in all analyzed Pseudomonas. The predicted Anr regulon (pan-regulon) consisted of 253 genes. However, only 11 Anr-boxes located upstream of qor/hemF, hemN, cioA/PA3931, azu, rpsL, gltP, orthologous to PA2867, cspD, tyrZ, slyD and oprG, were common to all species. Whole genome in silico prediction of metabolic pathways identified genes belonging to heme biosynthesis, cytochromes and Entner-Doudoroff pathway as members of Anr regulon in all strains. Extending genome analysis to 28 Pseudomonas spp. spanning all phylogenetic groups showed Anr-boxes conservation in genes related to these functions. When present, genes related to anaerobic metabolism were predicted to hold Anr-boxes. Focused on the genomes of eight P. aeruginosa isolates of diverse origins, we observed a conserved regulon, sharing nearly 80% of the genes, indicating its key role in this opportunistic pathogen. The results suggest that the core Anr regulon comprises genes involved in central metabolism and aerobic electron transport chain, whereas those genes related to anaerobic metabolism and other functions constitute the accessory Anr-regulon, thereby differentially contributing to the ecological fitness of each Pseudomonas species.


Assuntos
Proteínas de Bactérias/metabolismo , Pseudomonas/metabolismo , Regulon , Anaerobiose , Proteínas de Bactérias/genética , Especificidade da Espécie
6.
Environ Mol Mutagen ; 60(7): 594-601, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30921487

RESUMO

DNA damage-induced mutagenesis is a process governed by the SOS system that requires the activity of specialized DNA polymerases. These polymerases, which are devoid of proof-reading activity, serve to increase the probability of survival under stressful conditions in exchange for an error-prone DNA synthesis. As an opportunistic pathogen of humans, Pseudomonas aeruginosa employs adaptive responses that originally evolved for survival in many diverse and often stressful environmental conditions, where the action of error-prone DNA polymerases may be crucial. In this study, we have investigated the role of the polymerases ImuB and ImuC in P. aeruginosa DNA-damage induced mutagenesis. UV irradiation of imuB- and imuC-deletion mutants showed that both genes contribute to UV-induced mutagenesis in this bacterium. Furthermore, we confirmed that UV treatment significantly increase the expression levels of the imuB and imuC genes and that they are co-transcribed as a single transcriptional unit under the control of LexA as part of the SOS regulon in P. aeruginosa. Environ. Mol. Mutagen. 2019. © 2019 Wiley Periodicals, Inc.


Assuntos
DNA Bacteriano/genética , Mutagênese/genética , Pseudomonas aeruginosa/genética , Resposta SOS em Genética/genética , Raios Ultravioleta/efeitos adversos , Dano ao DNA/genética , DNA Polimerase Dirigida por DNA/genética , Regulon/genética
7.
Ecol Lett ; 21(1): 117-127, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29161760

RESUMO

Some microbial public goods can provide both individual and community-wide benefits, and are open to exploitation by non-producing species. One such example is the production of metal-detoxifying siderophores. Here, we investigate whether conflicting selection pressures on siderophore production by heavy metals - a detoxifying effect of siderophores, and exploitation of this detoxifying effect - result in a net increase or decrease. We show that the proportion of siderophore-producing taxa increases along a natural heavy metal gradient. A causal link between metal contamination and siderophore production was subsequently demonstrated in a microcosm experiment in compost, in which we observed changes in community composition towards taxa that produce relatively more siderophores following copper contamination. We confirmed the selective benefit of siderophores by showing that taxa producing large amounts of siderophore suffered less growth inhibition in toxic copper. Our results suggest that ecological selection will favour siderophore-mediated decontamination, with important consequences for potential remediation strategies.


Assuntos
Metais Pesados , Seleção Genética , Sideróforos , Ecologia , Poluentes Químicos da Água
8.
Proc Biol Sci ; 284(1859)2017 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-28747481

RESUMO

Cooperation in nature is ubiquitous, but is susceptible to social cheats who pay little or no cost of cooperation yet reap the benefits. The effect such cheats have on reducing population productivity suggests that there is selection for cooperators to mitigate the adverse effects of cheats. While mechanisms have been elucidated for scenarios involving a direct association between producer and cooperative product, it is less clear how cooperators may suppress cheating in an anonymous public goods scenario, where cheats cannot be directly identified. Here, we investigate the real-time evolutionary response of cooperators to cheats when cooperation is mediated by a diffusible public good: the production of iron-scavenging siderophores by Pseudomonas aeruginosa We find that siderophore producers evolved in the presence of a high frequency of non-producing cheats were fitter in the presence of cheats, at no obvious cost to population productivity. A novel morphotype independently evolved and reached higher frequencies in cheat-adapted versus control populations, exhibiting reduced siderophore production but increased production of pyocyanin-an extracellular toxin that can also increase the availability of soluble iron. This suggests that cooperators may have mitigated the negative effects of cheats by downregulating siderophore production and upregulating an alternative iron-acquisition public good. More generally, the study emphasizes that cooperating organisms can rapidly adapt to the presence of anonymous cheats without necessarily incurring fitness costs in the environment they evolve in.


Assuntos
Adaptação Fisiológica , Evolução Biológica , Pseudomonas aeruginosa/fisiologia , Sideróforos/fisiologia , Ferro
9.
Genome Announc ; 5(2)2017 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-28082504

RESUMO

Pseudomonas aeruginosa Hex1T was isolated from soils contaminated with used lubricating oil from a garage in Córdoba, Argentina. This strain is capable of utilizing this pollutant as the sole carbon and energy source. Here, we present the 6.9-Mb draft genome sequence of Hex1T, which contains many heavy metal-resistance genes.

10.
Biol Lett ; 11(2): 20140934, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25694506

RESUMO

While social interactions play an important role for the evolution of bacterial siderophore production in vitro, the extent to which siderophore production is a social trait in natural populations is less clear. Here, we demonstrate that siderophores act as public goods in a natural physical environment of Pseudomonas fluorescens: soil-based compost. We show that monocultures of siderophore producers grow better than non-producers in soil, but non-producers can exploit others' siderophores, as shown by non-producers' ability to invade populations of producers when rare. Despite this rare advantage, non-producers were unable to outcompete producers, suggesting that producers and non-producers may stably coexist in soil. Such coexistence is predicted to arise from the spatial structure associated with soil, and this is supported by increased fitness of non-producers when grown in a shaken soil-water mix. Our results suggest that both producers and non-producers should be observed in soil, as has been observed in marine environments and in clinical populations.


Assuntos
Pseudomonas fluorescens/crescimento & desenvolvimento , Pseudomonas fluorescens/metabolismo , Sideróforos/metabolismo , Microbiologia do Solo , Ferro/metabolismo , Pseudomonas fluorescens/genética , Solo/química
11.
PLoS Genet ; 10(10): e1004651, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25330091

RESUMO

The advent of high-throughput sequencing techniques has made it possible to follow the genomic evolution of pathogenic bacteria by comparing longitudinally collected bacteria sampled from human hosts. Such studies in the context of chronic airway infections by Pseudomonas aeruginosa in cystic fibrosis (CF) patients have indicated high bacterial population diversity. Such diversity may be driven by hypermutability resulting from DNA mismatch repair system (MRS) deficiency, a common trait evolved by P. aeruginosa strains in CF infections. No studies to date have utilized whole-genome sequencing to investigate within-host population diversity or long-term evolution of mutators in CF airways. We sequenced the genomes of 13 and 14 isolates of P. aeruginosa mutator populations from an Argentinian and a Danish CF patient, respectively. Our collection of isolates spanned 6 and 20 years of patient infection history, respectively. We sequenced 11 isolates from a single sample from each patient to allow in-depth analysis of population diversity. Each patient was infected by clonal populations of bacteria that were dominated by mutators. The in vivo mutation rate of the populations was ∼100 SNPs/year-∼40-fold higher than rates in normo-mutable populations. Comparison of the genomes of 11 isolates from the same sample showed extensive within-patient genomic diversification; the populations were composed of different sub-lineages that had coexisted for many years since the initial colonization of the patient. Analysis of the mutations identified genes that underwent convergent evolution across lineages and sub-lineages, suggesting that the genes were targeted by mutation to optimize pathogenic fitness. Parallel evolution was observed in reduction of overall catabolic capacity of the populations. These findings are useful for understanding the evolution of pathogen populations and identifying new targets for control of chronic infections.


Assuntos
Evolução Biológica , Fibrose Cística/microbiologia , Taxa de Mutação , Infecções por Pseudomonas/microbiologia , Pseudomonas aeruginosa/genética , Estudos Transversais , Fibrose Cística/complicações , Variação Genética , Interações Hospedeiro-Patógeno , Humanos , Estudos Longitudinais , Resistência a Meticilina/genética , Polimorfismo de Nucleotídeo Único , Infecções por Pseudomonas/genética , Pseudomonas aeruginosa/patogenicidade
12.
PLoS One ; 6(11): e27842, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22114708

RESUMO

Pseudomonas aeruginosa is an important opportunistic pathogen causing chronic airway infections, especially in cystic fibrosis (CF) patients. The majority of the CF patients acquire P. aeruginosa during early childhood, and most of them develop chronic infections resulting in severe lung disease, which are rarely eradicated despite intensive antibiotic therapy. Current knowledge indicates that three major adaptive strategies, biofilm development, phenotypic diversification, and mutator phenotypes [driven by a defective mismatch repair system (MRS)], play important roles in P. aeruginosa chronic infections, but the relationship between these strategies is still poorly understood. We have used the flow-cell biofilm model system to investigate the impact of the mutS associated mutator phenotype on development, dynamics, diversification and adaptation of P. aeruginosa biofilms. Through competition experiments we demonstrate for the first time that P. aeruginosa MRS-deficient mutators had enhanced adaptability over wild-type strains when grown in structured biofilms but not as planktonic cells. This advantage was associated with enhanced micro-colony development and increased rates of phenotypic diversification, evidenced by biofilm architecture features and by a wider range and proportion of morphotypic colony variants, respectively. Additionally, morphotypic variants generated in mutator biofilms showed increased competitiveness, providing further evidence for mutator-driven adaptive evolution in the biofilm mode of growth. This work helps to understand the basis for the specific high proportion and role of mutators in chronic infections, where P. aeruginosa develops in biofilm communities.


Assuntos
Adaptação Fisiológica , Biofilmes , Evolução Biológica , Reparo de Erro de Pareamento de DNA/genética , Mutação/genética , Infecções por Pseudomonas/microbiologia , Pseudomonas aeruginosa/genética , Fibrose Cística/microbiologia , Humanos , Pneumopatias/microbiologia , Proteína MutS de Ligação de DNA com Erro de Pareamento/genética , Pseudomonas aeruginosa/crescimento & desenvolvimento , Pseudomonas aeruginosa/isolamento & purificação
13.
PLoS One ; 5(9)2010 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-20844762

RESUMO

Survival of Pseudomonas aeruginosa in cystic fibrosis (CF) chronic infections is based on a genetic adaptation process consisting of mutations in specific genes, which can produce advantageous phenotypic switches and ensure its persistence in the lung. Among these, mutations inactivating the regulators MucA (alginate biosynthesis), LasR (quorum sensing) and MexZ (multidrug-efflux pump MexXY) are the most frequently observed, with those inactivating the DNA mismatch repair system (MRS) being also highly prevalent in P. aeruginosa CF isolates, leading to hypermutator phenotypes that could contribute to this adaptive mutagenesis by virtue of an increased mutation rate. Here, we characterized the mutations found in the mucA, lasR, mexZ and MRS genes in P. aeruginosa isolates obtained from Argentinean CF patients, and analyzed the potential association of mucA, lasR and mexZ mutagenesis with MRS-deficiency and antibiotic resistance. Thus, 38 isolates from 26 chronically infected CF patients were characterized for their phenotypic traits, PFGE genotypic patterns, mutations in the mucA, lasR, mexZ, mutS and mutL gene coding sequences and antibiotic resistance profiles. The most frequently mutated gene was mexZ (79%), followed by mucA (63%) and lasR (39%) as well as a high prevalence (42%) of hypermutators being observed due to loss-of-function mutations in mutL (60%) followed by mutS (40%). Interestingly, mutational spectra were particular to each gene, suggesting that several mechanisms are responsible for mutations during chronic infection. However, no link could be established between hypermutability and mutagenesis in mucA, lasR and mexZ, indicating that MRS-deficiency was not involved in the acquisition of these mutations. Finally, although inactivation of mucA, lasR and mexZ has been previously shown to confer resistance/tolerance to antibiotics, only mutations in MRS genes could be related to an antibiotic resistance increase. These results help to unravel the mutational dynamics that lead to the adaptation of P. aeruginosa to the CF lung.


Assuntos
Fibrose Cística/microbiologia , Reparo de Erro de Pareamento de DNA , Resistência Microbiana a Medicamentos , Infecções por Pseudomonas/microbiologia , Pseudomonas aeruginosa/fisiologia , Percepção de Quorum , Sistema Respiratório/microbiologia , Adolescente , Adulto , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Criança , Pré-Escolar , Doença Crônica , Feminino , Regulação Bacteriana da Expressão Gênica , Humanos , Masculino , Mutação , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/isolamento & purificação , Transativadores/genética , Transativadores/metabolismo , Adulto Jovem
14.
Mol Microbiol ; 64(2): 547-59, 2007 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-17493134

RESUMO

Pseudomonas aeruginosa colonizes the respiratory tract of cystic fibrosis (CF) patients, where mutators along with mucoid variants emerge leading to chronic infection. Mucoid conversion generally involves mutations inactivating the mucA gene. This study correlates the frequency and nature of mucA mutations with the activity of factors determining the mutation rate, such as MutS and polymerase IV (Pol IV). Results show that: (i) the emergence frequency of mucoid variants was higher in isolates arising from mutS populations compared with the wild-type strain; (ii) in both strains mucoid conversion occurred mainly by mucA mutations; (iii) however, the mutator strain harboured mostly mucA22 (a common allele in CF isolates), while the wild type showed a wider spectrum of mucA mutations with low incidence of mucA22; (iv) disruption of dinB in the wild-type and mutS strains decreased drastically the emergence frequency of mucoid variants; (v) furthermore, the incidence of mucA mutations diminished in the mutS dinB double mutant strain which consisted only in mucA22; (vi) finally, the mucoid isolates obtained from the dinB strain showed an unexpected absence of mucA mutations. Taken together results demonstrate the implication of both MutS and Pol IV in determining mucA as the main target for conversion to mucoidy.


Assuntos
Proteínas de Bactérias/metabolismo , DNA Polimerase beta/metabolismo , Glicosaminoglicanos/metabolismo , Proteína MutS de Ligação de DNA com Erro de Pareamento/deficiência , Proteína MutS de Ligação de DNA com Erro de Pareamento/metabolismo , Pseudomonas aeruginosa/enzimologia , Humanos , Mutagênese , Mutação/genética , Fenótipo , Infecções por Pseudomonas , Pseudomonas aeruginosa/isolamento & purificação
15.
Microbiology (Reading) ; 153(Pt 1): 225-37, 2007 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17185551

RESUMO

In Pseudomonas aeruginosa, quorum sensing constitutes a highly complex cell-to-cell communication system that, along with the cognate acylhomoserine lactone signals and regulators LasR and RhlR, modulates the production of virulence factors and a wide range of metabolic functions. In a previous paper, the authors reported that mismatch repair disruption in P. aeruginosa results in the spontaneous and reproducible emergence of defined morphological colony variants after a relatively short period of cultivation in an aerated rich medium, in contrast to the non-mutator parental strain, which does not display any kind of diversification under identical incubation conditions. One of the morphotypical variants, mS2, emerges at a high frequency and displays differences in virulence traits that could be regulated by major quorum-sensing regulators. The present study shows that mutS mS2 variants had defective LasR function due to simple but different point mutations along the lasR gene sequence, indicating that LasR inactivation is the main cause of mS2 phenotypic diversification. Moreover, it was determined that a non-functional LasR would confer a selective advantage in the late stationary phase, since viability was notably higher for mS2. Interestingly, in all mS2 variants analysed, no sequence alterations were found in the gacA and rhlR genes, suggesting that the selective pressures for GacA/RhlR and LasR were not the same and differed from those in other Pseudomonas species, which, when incubated in nutrient-rich liquid stationary-phase cultures, show specific high instability in the gacA-gacS genes.


Assuntos
Proteínas de Bactérias/genética , Proteínas de Ligação a DNA/genética , Proteína MutS de Ligação de DNA com Erro de Pareamento/deficiência , Proteína MutS de Ligação de DNA com Erro de Pareamento/genética , Pseudomonas aeruginosa/genética , Percepção de Quorum/genética , Transativadores/genética , Adaptação Fisiológica/genética , Sequência de Aminoácidos , Animais , Caenorhabditis elegans/microbiologia , Variação Genética , Dados de Sequência Molecular , Mutação Puntual , Pseudomonas aeruginosa/patogenicidade , Virulência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...