Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 77
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(7)2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38612937

RESUMO

Kaempferol (KAE) is a natural flavonoid with powerful reactive oxygen species (ROS) scavenging properties and beneficial effects on ex vivo sperm functionality. In this paper, we studied the ability of KAE to prevent or ameliorate structural, functional or oxidative damage to frozen-thawed bovine spermatozoa. The analysis focused on conventional sperm quality characteristics prior to or following thermoresistance tests, namely the oxidative profile of semen alongside sperm capacitation patterns, and the levels of key proteins involved in capacitation signaling. Semen samples obtained from 30 stud bulls were frozen in the presence of 12.5, 25 or 50 µM KAE and compared to native ejaculates (negative control-CtrlN) as well as semen samples cryopreserved in the absence of KAE (positive control-CtrlC). A significant post-thermoresistance test maintenance of the sperm motility (p < 0.001), membrane (p < 0.001) and acrosome integrity (p < 0.001), mitochondrial activity (p < 0.001) and DNA integrity (p < 0.001) was observed following supplementation with all KAE doses in comparison to CtrlC. Experimental groups supplemented with all KAE doses presented a significantly lower proportion of prematurely capacitated spermatozoa (p < 0.001) when compared with CtrlC. A significant decrease in the levels of the superoxide radical was recorded following administration of 12.5 (p < 0.05) and 25 µM KAE (p < 0.01). At the same time, supplementation with 25 µM KAE in the cryopreservation medium led to a significant stabilization of the activity of Mg2+-ATPase (p < 0.05) and Na+/K+-ATPase (p < 0.0001) in comparison to CtrlC. Western blot analysis revealed that supplementation with 25 µM KAE in the cryopreservation medium prevented the loss of the protein kinase A (PKA) and protein kinase C (PKC), which are intricately involved in the process of sperm activation. In conclusion, we may speculate that KAE is particularly efficient in the protection of sperm metabolism during the cryopreservation process through its ability to promote energy synthesis while quenching excessive ROS and to protect enzymes involved in the process of sperm capacitation and hyperactivation. These properties may provide supplementary protection to spermatozoa undergoing the freeze-thaw process.


Assuntos
Antígenos de Grupos Sanguíneos , Sêmen , Bovinos , Masculino , Animais , Quempferóis/farmacologia , Espécies Reativas de Oxigênio , Motilidade dos Espermatozoides , Espermatozoides , Triptofano Oxigenase , Adenosina Trifosfatases , Anticorpos
2.
Life (Basel) ; 13(9)2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37763324

RESUMO

Isorhamnetin has gained research interest for its anti-inflammatory, anti-proliferative and chemoprotective properties. In this study, human colon adenocarcinoma cells were cultured in the presence or absence of different isorhamnetin concentrations (5-150 µM) for 24 h or 48 h of cultivation to explore the impact on several parameters of viability/proliferation (mitochondrial function using an MTT test, metabolic activity, cell membrane integrity and lysosomal activity using a triple test). The intracellular generation of superoxide radicals using an NBT test and ELISA analysis was performed to observe the biosynthesis of interleukin 8 (IL-8) in cells stimulated with zymosan, as well as in basal conditions. The antiproliferative activity of isorhamnetin was demonstrated by significantly reduced values of mitochondrial and metabolic activity, integrity of cell membranes and lysosomal activity. Its high prooxidant potential was reflected by the significantly elevated generation of superoxides even in cells with low viability status. The anti-inflammatory effect of isorhamnetin was evident due to decreased IL-8 production, and the most significant decline in IL-8 concentration was observed after 24 h treatment in cells with induced inflammation. We demonstrated that isorhamnetin can suppress the proliferation of HT-29 cells, and this effect was correlated with pro-oxidative and anti-inflammatory activity of isorhamnetin.

3.
Toxics ; 11(7)2023 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-37505564

RESUMO

Recently, neonicotinoids have become the fastest-growing class of insecticides in conventional crop protection, with extensive usage against a wide range of sucking and chewing pests. Neonicotinoids are widely used due to their high toxicity to invertebrates, simplicity, flexibility with which they may be applied, and lengthy persistence, and their systemic nature ensures that they spread to all sections of the target crop. However, these properties raise the risk of environmental contaminations and potential toxicity to non-target organisms. Acetamiprid is a new generation insecticide, which is a safer alternative for controlling insect pests because of its low toxicity to honeybees. Acetamiprid is intended to target nicotinic acetylcholine receptors in insects, but its widespread usage has resulted in negative impacts on non-target animals such as mammals. This review summarizes in vivo and in vitro animal studies that investigated the toxicity of specific neonicotinoids. With summarized data, it can be presumed that certain concentrations of neonicotinoids in the reproductive system cause oxidative stress in the testis; spermatogenesis disruption; spermatozoa degradation; interruptions to endocrine function and Sertoli and Leydig cell function. In the female reproductive system, acetamiprid evokes pathomorphological alterations in follicles, along with metabolic changes in the ovaries.

4.
Acta Histochem ; 125(6): 152056, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37321134

RESUMO

The current study was intended to evaluate impacts of both iron (Fe) enrichment and overload (in the form of ferrous sulphate heptahydrate, FeSO4.7H2O) on ultrastructural characteristics of human adrenocarcinoma NCI-H295R cell line. Here, the NCI-H295R cells were treated with 0, 3.90, and 1000 µM FeSO4.7H2O, and consequently proceeded for purposes of ultrastructural studies. Micrographs taken under transmission electron microscope (TEM) were investigated from the qualitative and quantitative (unbiased stereological approaches) aspects, and obtained findings were compared among the three groups of the cells. The ultrastructural features related to the steroidogenic process were found to be similar between the untreated and both Fe-exposed cell populations, with conspicuous mitochondria with well-defined lamellar cristae (creating clusters of varying sizes in the regions of increased energy demands) and concentric whorls of smooth endoplasmic reticulum (SER) being the most noticeable characteristics. The precise estimates of the component (volume, surface) fractions of the nucleus, mitochondria, and lipid droplets (LDs), as well as of the nucleus/cytoplasm (N/C) ratio have revealed close similarities (P > 0.05) in all cell groups investigated. Nonetheless, the low concentration of FeSO4.7H2O exhibited beneficial action on ultrastructural organization of the NCI-H295R cells. In effect, these cells were distinguished by mitochondria with smoother surfaces and clearer outlines, higher density of thin, parallel lamellar cristae (deeply extending into the mitochondrial matrix), and more widespread distribution of fine SER tubules as compared to the control ones, all of them suggesting higher level of energy requirements and metabolic activity, and more intensive rate of steroidogenesis. Interestingly, no obvious ultrastructural modifications were observed in the NCI-H295R cells treated with high FeSO4.7H2O concentration. This finding can be linked to either an adaptive ultrastructural machinery of these cells to cope with the adverse effect of the element or to insufficient dose of FeSO4.7H2O (1000 µM) to induce ultrastructural signs of cytotoxicity. Purposefully, the results of the current study complement our previous paper dealing with impacts of FeSO4.7H2O on the NCI-H295R cell viability and steroidogenesis at the molecular level. Hence, they fill a knowledge gap considering structure-function coupling in this cellular model system upon the metal exposure. This integrated approach can enhance our understanding of the cellular responses to Fe enrichment and overload which can be helpful for individuals with reproductive health concerns.


Assuntos
Núcleo Celular , Ferro , Humanos , Ferro/farmacologia , Linhagem Celular , Mitocôndrias , Sobrevivência Celular
5.
Front Cell Dev Biol ; 11: 1064574, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37025174

RESUMO

Background: Chlorophytum borivilianum L. is a recognized herbal medicine for the management of impotency in South Asian countries. In Ayurveda, it is used for the management of multiple health conditions, including diabetes, infection, and cardiovascular diseases. Parts of the plant have been used as excellent antioxidants and scavengers of free radicals. Since oxidative stress plays an important role in spermatogenesis and fertility in male populations, this study evaluated the role of ethanolic extract of C. borivilianum roots in epididymal sperm maturation against adversities posed by ionizing gamma irradiation. Materials and methods: Antioxidant potential of C. borivilianum root extract (CRE) was evaluated through DPPH (2,2-diphenylpicrylhydrazyl) and NO (nitric oxide) scavenging assays. Four groups of healthy Swiss albino mice were constituted, which were labeled as follows: Group I: sham control, Group II: 7-day pre-treatment with 50 mg/kg CRE, Group III: 6 Gy irradiation without pre-treatment, and Group IV: 7-day pre-treatment with 50 mg/kg CRE and 6 Gy irradiation on day 7. Swiss albino mice were observed for 30 days and later sacrificed to evaluate sperm quality parameters. Results: CRE showed a remarkable antioxidant potential with IC50 values of 46.37 µg/ml and 98.39 µg/ml for DPPH and NO, respectively. A significant decline (p < 0.001) in cauda epididymal sperm count, motility, and viability was observed in Group III animals. Group IV also showed a substantial decline (p < 0.01) in all three parameters compared to Group I; nonetheless, these were significantly higher than Group III. Morphological alterations indicated a coiled and bent tail, with the presence of cytoplasmic droplets in Group III, which declined substantially in Group IV. The ultrastructure of sperm indicated higher curvature of hook in Group III than Group IV, indicating specific interferences in the sperm maturation process. Conclusion: It was concluded that pre-treatment with 50 mg/kg body weight of CRE could protect sperm during epididymal maturation against oxidative stress.

6.
Int J Mol Sci ; 24(3)2023 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-36768832

RESUMO

Epicatechin (EPC) is a flavonoid belonging to the family of catechins; it has been described as a powerful scavenger of a wide spectrum of reactive oxygen species (ROS) and a modulator of ex vivo sperm vitality. In this study, we assessed the potential protective abilities of EPC on cryopreserved bovine spermatozoa. We focused on conventional quality parameters, as well as the oxidative profile of spermatozoa alongside capacitation patterns, and expression profiles of proteins involved in the process of capacitation. Semen samples were cryopreserved in the presence of 25, 50 or 100 µmol/L EPC and compared to native semen (negative control) as well as ejaculates frozen in the absence of EPC (positive control). A dose-dependent improvement of conventional sperm quality parameters was observed following EPC administration, particularly in case of the sperm motility, membrane, acrosome and DNA integrity in comparison to the positive control. Experimental groups exposed to all EPC doses presented with a significantly lower proportion of capacitated spermatozoa as opposed to the positive control. While no significant effects of EPC were observed in cases of superoxide production, a significant decrease in the levels of hydrogen peroxide and hydroxyl radical were recorded particularly in the experimental groups supplemented with 50 and 100 µmol/L EPC. Western blot analysis revealed that supplementation of particularly 100 µmol/L EPC to the semen extender prevented the loss of the cation channel of sperm (CatSper) isoforms 1 and 2, sodium bicarbonate cotransporter (NBC) and protein kinase A (PKA), which play important roles in the process of sperm capacitation. In summary, we may hypothesize that EPC is particularly effective in the stabilization of the sperm membrane during the freeze-thaw process through its ability to quench ROS involved in damage to the membrane lipids and to prevent the loss of membrane channels crucial to initiate the process of sperm capacitation. These attributes of EPC provide an additional layer of protection to spermatozoa exposed to low temperatures, which may be translated into a higher post-thaw structural integrity and functional activity of male gametes.


Assuntos
Catequina , Preservação do Sêmen , Masculino , Animais , Bovinos , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Catequina/farmacologia , Catequina/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Sêmen/metabolismo , Motilidade dos Espermatozoides , Preservação do Sêmen/veterinária , Espermatozoides/metabolismo , Criopreservação , Canais Iônicos/metabolismo , Análise do Sêmen , Crioprotetores/farmacologia
7.
Life (Basel) ; 14(1)2023 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-38276253

RESUMO

Bisphenol A (BPA) is an endocrine-disruptive chemical that is widely utilized in the production of polycarbonate plastic and epoxy resin, which are used to make a wide range of consumer products, food and drink containers, and medical equipment. When the potential risk of BPA emerged, it was substituted by allegedly less harmful substitutes such as bisphenols S, F, B, and AF. However, evidence suggests that all bisphenols can have endocrine-disruptive effects, while the extent of these effects is unknown. This study aimed to determine effect of BPA, BPAF, BPB, BPF, and BPS on viability and steroidogenesis in human adrenocortical carcinoma cell line in vitro. The cytotoxicity of bisphenols was shown to be considerable at higher doses. However, at low concentrations, it improved viability as well as steroid hormone secretion, indicating that bisphenols have a biphasic, hormetic effect in biological systems. The results are consistent with the hypothesis that bisphenols selectively inhibit some steroidogenic enzymes. These findings suggest that bisphenols have the potential to disrupt cellular steroidogenesis in humans, but substantially more detailed and systematic research is needed to gain a better understanding of the risks associated with bisphenols and their endocrine-disrupting effect on humans and wildlife.

8.
Adv Exp Med Biol ; 1391: 33-58, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36472815

RESUMO

This article examines the environmental factor-induced oxidative stress (OS) and their effects on male reproductive and sexual health. There are several factors that induce OS, i.e. radition, metal contamination, xenobiotic compounds, and cigarette smoke and lead to cause toxicity in the cells through metabolic or bioenergetic processes. These environmental factors may produce free radicals and enhance the reactive oxygen species (ROS). Free radicals are molecules that include oxygen and disbalance the amount of electrons that can create major chemical chains in the body and cause oxidation. Oxidative damage to cells may impair male fertility and lead to abnormal embryonic development. Moreover, it does not only cause a vast number of health issues such as ageing, cancer, atherosclerosis, insulin resistance, diabetes mellitus, cardiovascular diseases, ischemia-reperfusion injury, and neurodegenerative disorders but also decreases the motility of spermatozoa while increasing sperm DNA damage, impairing sperm mitochondrial membrane lipids and protein kinases. This chapter mainly focuses on the environmental stressors with further discussion on the mechanisms causing congenital impairments due to poor sexual health and transmitting altered signal transduction pathways in male gonadal tissues.


Assuntos
Saúde Sexual , Sementes , Estresse Oxidativo , Radicais Livres
9.
Int J Mol Sci ; 23(23)2022 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-36498971

RESUMO

Since the molecular similarities and differences among physiological capacitation and cryocapacitation have not been studied in detail, this study was designed to assess the gene and protein expression levels of the Cation channel of sperm (CatSper) 1 and 2, sodium bicarbonate (Na+/HCO3−) cotransporter (NBC) and protein kinase A (PKA) in un-capacitated (control), in vitro capacitated (CAP) and cryopreserved (CRYO) bovine spermatozoa. All samples were subjected to motility evaluation using the computer assisted sperm analysis and chlortetracycline (CTC) assay for the assessment of the capacitation patterns. Furthermore, quantitative reverse transcription PCR (qRT-PCR) and Western blots were used to monitor the expression patterns of the selected capacitation markers. The results showed a significant reduction in the gene and protein expression levels of CatSper1 and 2 in the CRYO group when compared to the CAP group (p < 0.0001). In the case of NBC, the results were not significantly different or were inconclusive. While a non-significant down-regulation of PKA was found in the CRYO group, a significant reduction in the expression of the PKA protein was found in frozen-thawed spermatozoa in comparison to the CAP group (p < 0.05). In conclusion, we may hypothesize that while in vitro capacitated and cryopreserved spermatozoa exhibit CTC-patterns consistent with capacitation events, the molecular machinery underlying CTC-positivity may be different.


Assuntos
Clortetraciclina , Capacitação Espermática , Bovinos , Masculino , Animais , Capacitação Espermática/fisiologia , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Sêmen/metabolismo , Espermatozoides/metabolismo , Criopreservação/métodos , Clortetraciclina/farmacologia , Motilidade dos Espermatozoides/fisiologia
10.
PLoS One ; 17(10): e0276683, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36269791

RESUMO

Low temperatures during cryopreservation activate a cascade of changes, which may lead into irreversible damage and reduction of the fertilization potential, including the process of premature capacitation. The aim of our study was to evaluate the range of cell damage following the cryopreservation process and possible activation of cryocapacitation in bovine spermatozoa. For the experiments semen samples were obtained from 30 sexually mature Holstein bulls. Within the analysed parameters, we focused on the functional activity, structural integrity, capacitation status and oxidative profile. The samples were divided into three experimental groups, control (CTRL), in vitro capacitated (CAP) and cryopreserved (CRYO). Based on the collected data, there was a significant decrease in the sperm motility, mitochondrial membrane potential and concentration of cyclic adenosine monophosphate in the CRYO group when compared to CAP and CTRL (P<0.0001). A significant decrease (P<0.01; P<0.0001) in the membrane and acrosome integrity as well as DNA fragmentation index and a significant increase (P<0.0001) of necrotic cells were observed in the CRYO group. Following capacitation, a significant increase (P<0.01; P<0.0001) was recorded in the number of cells which underwent the acrosome reaction in the CRYO group against CAP and CTRL. Changes in the oxidative profile of the CRYO group indicates an increase (P<0.0001) in the reactive oxygen species generation, except for the superoxide radical, which was significantly higher (P<0.0001; P<0.001) in the CAP group in comparison with CRYO and CTRL. In summary, premature capacitation may be considered a consequence of cryopreservation and the assessed parameters could serve as physical markers of cryogenic damage to bovine spermatozoa in the future.


Assuntos
Preservação do Sêmen , Bovinos , Masculino , Animais , Preservação do Sêmen/veterinária , Capacitação Espermática/fisiologia , Motilidade dos Espermatozoides/fisiologia , Superóxidos/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Espermatozoides/metabolismo , Criopreservação/veterinária , Monofosfato de Adenosina/metabolismo , Estresse Oxidativo
11.
Antioxidants (Basel) ; 11(9)2022 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-36139870

RESUMO

This study monitored the chemical and biochemical composition of bovine seminal plasma (SP). Freshly ejaculated semen (n = 20) was aliquoted into two parts. The first aliquot was immediately assessed to determine the sperm motion parameters. Another motility measurement was performed following an hour-long co-incubation of spermatozoa with SP at 6 °C. The other aliquot was processed to obtain the SP. Seminal plasma underwent the analyses of chemical composition and quantification of selected proteins, lipids and RedOx markers. Determined concentrations of observed parameters served as input data to correlation analyses where associations between micro and macro elements and RedOx markers were observed. Significant correlations of total oxidant status were found with the content of Cu and Mg. Further significant correlations of glutathione peroxidase were detected in relation to Fe and Hg. Furthermore, associations of chemical elements and RedOx markers and spermatozoa quality parameters were monitored. The most notable correlations indicate beneficial effects of seminal Fe on motility and Mg on velocity and viability of spermatozoa. On the contrary, negative correlations were registered between Zn and sperm velocity and seminal cholesterol content and motility. Our findings imply that seminal plasma has a prospective to be developed as the potential biomarker of bull reproductive health.

12.
Open Life Sci ; 17(1): 1001-1029, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36060647

RESUMO

Bacterial colonization of male reproductive tissues, cells, and fluids, and the subsequent impact of bacteria on the sperm architecture, activity, and fertilizing potential, has recently gained increased attention from the medical and scientific community. Current evidence strongly emphasizes the fact that the presence of bacteria in semen may have dire consequences on the resulting male fertility. Nevertheless, the molecular basis underlying bacteriospermia-associated suboptimal semen quality is sophisticated, multifactorial, and still needs further understanding. Bacterial adhesion and subsequent sperm agglutination and immobilization represent the most direct pathway of sperm-bacterial interactions. Furthermore, the release of bacterial toxins and leukocytic infiltration, associated with a massive outburst of reactive oxygen species, have been repeatedly associated with sperm dysfunction in bacteria-infested semen. This review serves as a summary of the present knowledge on bacteriospermia-associated male subfertility. Furthermore, we strived to outline the currently available methods for assessing bacterial profiles in semen and to outline the most promising strategies for the prevention and/or management of bacteriospermia in practice.

13.
Molecules ; 27(16)2022 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-36014360

RESUMO

The prevalence of reproductive dysfunction in males has risen in the last few years, and alternative therapies are gradually gaining in popularity. Our in vitro study aimed to evaluate the potential impact of Lepidium sativum L. on mice TM3 Leydig cells, concerning basal parameters such as cell viability, cell membrane integrity, and lysosomal activity, after 24 h and 48 h exposure. Moreover, reactive oxygens species generation, sex-steroid hormone secretion, and intercellular communication were quantified. In the present study, the microgreen extract from Lepidium was rich in ferulic acid, 4-OH benzoic acid, and resveratrol, with a significant antioxidant activity. The results showed that lower experimental doses (62.5-250 µg/mL) could positively affect the observed parameters, with significant differences at 250 µg/mL after 24 h and 48 h, respectively. Potential risks could be associated with higher concentrations, starting at 500 µg/mL, 1000 µg/mL, and 2000 µg/mL of Lepidium. Nevertheless, biochemical quantification indicated a significant antioxidant potential and a rich content of biologically active molecules at the applied doses, and time determined the intracellular response of the cultured model.


Assuntos
Lepidium sativum , Lepidium , Animais , Antioxidantes/metabolismo , Antioxidantes/farmacologia , Comunicação Celular , Sobrevivência Celular , Lepidium/metabolismo , Lepidium sativum/química , Células Intersticiais do Testículo/metabolismo , Masculino , Camundongos , Extratos Vegetais/metabolismo , Extratos Vegetais/farmacologia , Testosterona/metabolismo
14.
Acta Histochem ; 124(5): 151912, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35661985

RESUMO

Cell lines as an in vitro model for xenobiotic screening and toxicity studies provide a very important tool in the field of scientific research at the level of molecular pathways and gene expression. Good cell culture practice and intracellular characterization, as well as physiological properties of the cell line are of critical importance for in vitro reproductive toxicity testing of various endocrine-disrupting chemicals. The NCI-H295R, human adrenocarcinoma cell line, is the most widely used in vitro cellular system to study the human adrenal steroidogenic pathway at the level of hormone production and gene expression, as it expresses genes that encode for all the key enzymes for steroidogenesis. In this review, we aim to highlight the information considering the origin, development, physiological and ultrastructural characteristics of the NCI-H295R cell line. The review also creates a broad overview of the cell line usage in various range of studies related to the steroidogenesis issues. To our best knowledge, the paper provides the first report of quantitative data (ex novo) from stereological estimates of component (volume, surface) densities of nuclei, mitochondria, and lipid droplets of the NCI-H295R cells. Such ultrastructural measurements can be valuable in the assessment of underlying mechanisms of changes in the cell steroid hormone production induced by the action of diverse endocrine disruptors. Thus, they can significantly contribute to complexity of structure-function relationships in association with steroidogenesis.


Assuntos
Neoplasias do Córtex Suprarrenal , Carcinoma Adrenocortical , Disruptores Endócrinos , Neoplasias do Córtex Suprarrenal/metabolismo , Neoplasias do Córtex Suprarrenal/patologia , Carcinoma Adrenocortical/metabolismo , Linhagem Celular Tumoral , Disruptores Endócrinos/farmacologia , Hormônios , Humanos
15.
Artigo em Inglês | MEDLINE | ID: mdl-34939888

RESUMO

The purpose of the present study was to evaluate the effects of aflatoxin B1 (AFB1) and benzo[a]pyrene (BaP) on the heart muscle of chicken embryos of the broiler line Ross 308. The benzo[a]pyrene in the organic oil solution was injected in ovo on the 6th day of the incubation in doses of: 0.1, 0.5, and 1 mg/kg weight of eggs; the aflatoxin B1 in the organic oil solution was injected in ovo on the 6th day of the incubation into the yolk in doses of 80, 120 and 240 ng/kg weight of eggs. Multiple biochemical and hepatic parameters have been observed, including sodium, potassium, chloride, cholesterol, uric acid, total proteins, aminotransferase aspartate, and aminotransferase alanine. A low dose of AFB1 and BaP administered in ovo during early embryonic development had a significant impact on chicken embryonic development, as demonstrated by alterations in biochemical, mineral, and hepatic parameters.


Assuntos
Aflatoxina B1 , Galinhas , Aflatoxina B1/toxicidade , Animais , Benzo(a)pireno/toxicidade , Embrião de Galinha , Fígado , Miocárdio
16.
Animals (Basel) ; 11(11)2021 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-34828039

RESUMO

Bacterial contamination of bovine ejaculates intended for artificial insemination may be reflected in a significant economic loss due to unsuccessful fertilization as well as health issues of the recipients. The Staphylococcus genus represents a large part of bacteriocenosis of bovine ejaculates. Therefore, this study aims to get a closer look on the effects of Staphylococcus-induced bacteriospermia under in vitro conditions on bovine sperm quality. Prior to inducing bacteriospermia, spermatozoa were separated from each ejaculate using Percoll® Plus gradient medium in order to limit the effects only to the selected bacterial species. Seven Staphylococcus species previously isolated from bovine semen were used for our experiments at a turbidity of 0.5 McFarland (equivalent to 1.5 × 108 colony-forming units per mL). The contaminated semen samples were incubated at 37 °C and at times of 0, 2, and 4 h, motility, mitochondrial membrane potential, reactive oxygen species (ROS) generation, sperm DNA fragmentation, and magnesium (Mg) and calcium (Ca) extracellular concentration were analyzed and compared with the control group (uncontaminated). The results showed no significant changes at the initial measurement. However, significant adverse effects were observed after 2 h and 4 h of incubation. Most notably, the presence of S. aureus, S. warneri, S. kloosii, and S. cohnii caused a significantly increased ROS production, leading to sperm DNA fragmentation, changes in the mitochondrial membrane potential, and a decreased sperm motility. Furthermore, the presence of Staphylococcus species led to lower extracellular concentrations of Mg and Ca. In conclusion, the overgrowth of Staphylococcus bacteria in bovine semen may contribute to oxidative stress resulting in sperm DNA fragmentation, altered mitochondrial membrane potential, and diminished sperm motility.

17.
Life (Basel) ; 11(11)2021 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-34833114

RESUMO

The composition of seminal plasma of individual sires varies and so does the fertilizing ability. Micro and macro elements along with seminal enzymes, hormones, proteins, and lipids contained in seminal plasma are essential for the proper physiological function of spermatozoa. However, elevated levels against the normal physiological values, especially in the case of trace metals, result in the production of reactive oxygen species. The deficiency of antioxidants in the seminal plasma that could scavenge free radicals causes an impairment of spermatozoa quality. Ejaculates were obtained from 19 stallions. The fresh semen was analyzed to evaluate qualitative parameters of spermatozoa in terms of the motility, viability, and integrity of DNA. Separated seminal plasma underwent the assessment of the chemical and biochemical composition and RedOx markers. Based on the obtained concentrations of individual chemical elements, the correlation analysis suggested a negative impact of Cu in seminal plasma on the SOD, GPx, and LPO. Contrary, positive correlation was detected between FRAP and motility features. While Cu negatively correlated with sperm motion parameters, the adverse effect on viability was suggested for Cd. Our data suggest that seminal plasma has a potential due to its availability to become the potential biomarker of the reproductive health of farm animals.

18.
Molecules ; 26(19)2021 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-34641516

RESUMO

The inflammatory reaction accompanies in part or in full any disease process in the vascularized metazoan. This complicated reaction is controlled by regulatory mechanisms, some of which produce unpleasant symptomatic manifestations of inflammation. Therefore, there has been an effort to develop selective drugs aimed at removing pain, fever, or swelling. Gradually, however, serious adverse side effects of such inhibitors became apparent. Scientific research has therefore continued to explore new possibilities, including naturally available substances. Amygdalin is a cyanogenic glycoside present, e.g., in bitter almonds. This glycoside has already sparked many discussions among scientists, especially about its anticancer potential and related toxic cyanides. However, toxicity at different doses made it generally unacceptable. Although amygdalin given at the correct oral dose may not lead to poisoning, it has not yet been accurately quantified, as its action is often affected by different intestinal microbial consortia. Its pharmacological activities have been studied, but its effects on the body's inflammatory response are lacking. This review discusses the chemical structure, toxicity, and current knowledge of the molecular mechanism of amygdalin activity on immune functions, including the anti-inflammatory effect, but also discusses inflammation as such, its mediators with diverse functions, which are usually targeted by drugs.


Assuntos
Amigdalina/efeitos adversos , Amigdalina/farmacologia , Anti-Inflamatórios não Esteroides/farmacologia , Inflamação/tratamento farmacológico , Inflamação/etiologia , Amigdalina/química , Amigdalina/toxicidade , Animais , Anti-Inflamatórios não Esteroides/efeitos adversos , Ciclo-Oxigenase 1/metabolismo , Ciclo-Oxigenase 2/metabolismo , Citocinas/metabolismo , Humanos , Mediadores da Inflamação/metabolismo
19.
PLoS One ; 16(9): e0257766, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34555113

RESUMO

The aim of this study was to assess the dose- and time-dependent in vitro effects of ferrous sulphate (FeSO4.7H2O) on the motility parameters, viability, structural and functional activity of bovine spermatozoa. Spermatozoa motility parameters were determined after exposure to concentrations (3.90, 7.80, 15.60, 31.20, 62.50, 125, 250, 500 and 1000 µM) of FeSO4.7H2O using the SpermVisionTM CASA (Computer Assisted Semen Analyzer) system in different time periods. Cell viability was assessed by 3-(4,5-dimethylthiazol-2-yl)-2,5- diphenyltetrazolium bromide (MTT) assay, and the Annexin V-Fluos was applied to detect the membrane integrity of spermatozoa. The initial spermatozoa motility showed increased average values at all experimental concentrations compared to the control group (culture medium without FeSO4.7H2O). After 2 h, FeSO4.7H2O stimulated the overall percentage of spermatozoa motility at the concentrations of ≤ 125 µM. However, experimental administration of 250 µM of FeSO4.7H2O significantly (P < 0.001) decreased the spermatozoa motility but had no negative effect on the cell viability (P < 0.05) (Time 2 h). The lowest viability was noted after the addition of ≥ 500 µM of FeSO4.7H2O (P < 0.001). The concentrations of ≤ 62.50 µM of FeSO4.7H2O markedly stimulated (P < 0.001) spermatozoa activity after 24 h of exposure, while at high concentrations of ≥ 500 µM of FeSO4.7H2O the overall percentage of spermatozoa motility was significantly inhibited (P < 0.001) and it elicited cytotoxic action. Fluorescence analysis confirmed that spermatozoa incubated with higher concentrations (≥ 500 µM) of FeSO4.7H2O displayed apoptotic changes, as detected in head membrane (acrosomal part) and mitochondrial portion of spermatozoa. Moreover, the highest concentration and the longest time of exposure (1000 µM of FeSO4.7H2O; Time 6 h) induced even necrotic alterations to spermatozoa. These results suggest that high concentrations of FeSO4.7H2O are able to induce toxic effects on the structure and function of spermatozoa, while low concentrations may have the positive effect on the fertilization potential of spermatozoa.


Assuntos
Anexina A5/metabolismo , Compostos Ferrosos/efeitos adversos , Motilidade dos Espermatozoides/efeitos dos fármacos , Espermatozoides/fisiologia , Animais , Bovinos , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Compostos Ferrosos/farmacologia , Masculino , Espermatozoides/efeitos dos fármacos , Fatores de Tempo
20.
Syst Biol Reprod Med ; 67(6): 438-449, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34445906

RESUMO

Although bacterial contamination of ejaculates may cause difficulties in cattle reproduction, standard protocols for a routine microbiological analysis of bovine semen are still missing. Understanding of the mechanisms of bacterial damage to spermatozoa may contribute to the prevention and management of bacteriospermia in the future. Therefore, this study was designed to investigate bacterial profiles of fresh bovine ejaculates (n = 30), while at the same time we focused on assessing the relationships between bacteriospermia and selected sperm quality parameters as well as an array of oxidative stress and inflammatory markers. The samples were divided into three quality groups according to the sperm motility: Excellent (EX) - over 90% > Good (GO) - between 89% and 80% > Moderate (MO) - under 80%. The results showed a significant increase in reactive oxygen species (ROS) generation in the GO group when compared to the EX group. In the MO group, a deterioration of almost all quality parameters was observed when compared to the EX group. In particular, sperm motility, mitochondrial membrane potential, ROS production and IL-6 concentration exhibited a significant decline. Pearson correlation analysis revealed positive associations among bacterial load and the presence of leukocytes in semen (r = 0.965), malondialdehyde concentration (r = 0.816) and DNA fragmentation (r = 0.784). MALDI-TOF MS Biotyper analysis showed a prevalence of the Staphylococcus genus. The quantification of bacterial colonies revealed a significantly increased (P < 0.01) bacterial load in the MO group when compared with the EX as well as the GO group. Overall, our results suggest that sperm quality may be affected by both, bacterial composition, and bacterial load. It appears that an increased presence of bacterial species triggers the immune response, causes oxidative stress, and thereby contributes to sperm structural alterations while diminishing their fertilization ability.Abbreviations: EX: Excellent; GO: Good; MO: Moderate; MOT: Motility; ROS: Reactive Oxygen Species; MMP: Mitochondrial Membrane Potential; IL-1: Interleukin 1; IL-6: Interleukin 6; IL-8: Interleukin 8; IL-12: Interleukin 12; CRP: C-reactive protein; DNA: Deoxyribonucleic acid; MALDI-TOF MS: Matrix-assisted Laser Desorption/Ionization-Time of Flight Mass Spectrometry; LPO: Lipid peroxidation; CFU: Colony-forming units MDA: Malondialdehyde; CASA: Computer-assisted Sperm Analysis; WS: Working solution; RIPA: Radio-immunoprecipitation assay; TBARS: Thiobarbituric Acid Reactive Substances; BHB: D-ß-hydroxybutyrate.


Assuntos
Análise do Sêmen , Preservação do Sêmen , Animais , Bovinos , Masculino , Sêmen , Motilidade dos Espermatozoides , Espermatozoides
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...