Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Molecules ; 29(17)2024 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-39274837

RESUMO

Milk powders are becoming a major attraction for many industrial applications due to their nutritional and functional properties. Different types of powdered milk, each with their own distinct chemical compositions, can have different functionalities. Consequently, the development of rapid monitoring methods is becoming an urgent task to explore and expand their applicability. Lately, there is growing emphasis on the potential of near-infrared spectroscopy (NIRS) as a rapid technique for the quality assessment of dairy products. In the present work, we explored the potential of NIRS coupled with chemometrics for the prediction of the main functional and chemical properties of three types of milk powders, as well as their important processing parameters. Mare, camel and cow milk powders were prepared at different concentrations (5%, 10% and 12%) and temperatures (25 °C, 40 °C and 65 °C), and then their main physicochemical attributes and NIRS spectra were analyzed. Overall, high accuracy in both recognition and prediction based on type, concentration and temperature was achieved by NIRS-based models, and the quantification of quality attributes (pH, viscosity, dry matter content, fat content, conductivity and individual amino acid content) also resulted in high accuracy in the models. R2CV and R2pr values ranging from 0.8 to 0.99 and 0.7 to 0.98, respectively, were obtained by using PLSR models. However, SVR models achieved higher R2CV and R2pr values, ranging from 0.91 to 0.99 and 0.80 to 0.99, respectively.


Assuntos
Camelus , Leite , Pós , Espectroscopia de Luz Próxima ao Infravermelho , Animais , Espectroscopia de Luz Próxima ao Infravermelho/métodos , Leite/química , Pós/química , Bovinos , Cavalos , Quimiometria/métodos , Feminino
2.
Molecules ; 29(4)2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38398532

RESUMO

Protein adulteration is a common fraud in the food industry due to the high price of protein sources and their limited availability. Total nitrogen determination is the standard analytical technique for quality control, which is incapable of distinguishing between protein nitrogen and nitrogen from non-protein sources. Three benchtops and one handheld near-infrared spectrometer (NIRS) with different signal processing techniques (grating, Fourier transform, and MEM-micro-electro-mechanical system) were compared with detect adulteration in protein powders at low concentration levels. Whey, beef, and pea protein powders were mixed with a different combination and concentration of high nitrogen content compounds-namely melamine, urea, taurine, and glycine-resulting in a total of 819 samples. NIRS, combined with chemometric tools and various spectral preprocessing techniques, was used to predict adulterant concentrations, while the limit of detection (LOD) and limit of quantification (LOQ) were also assessed to further evaluate instrument performance. Out of all devices and measurement methods compared, the most accurate predictive models were built based on the dataset acquired with a grating benchtop spectrophotometer, reaching R2P values of 0.96 and proximating the 0.1% LOD for melamine and urea. Results imply the possibility of using NIRS combined with chemometrics as a generalized quality control tool for protein powders.


Assuntos
Nitrogênio , Espectroscopia de Luz Próxima ao Infravermelho , Animais , Bovinos , Espectroscopia de Luz Próxima ao Infravermelho/métodos , Pós , Soro do Leite , Ureia , Contaminação de Alimentos/análise
3.
Molecules ; 25(11)2020 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-32481691

RESUMO

Nitrogen-rich adulterants in protein powders present sensitivity challenges to conventional combustion methods of protein determination which can be overcome by near Infrared spectroscopy (NIRS). NIRS is a rapid analytical method with high sensitivity and non-invasive advantages. This study developed robust models using benchtop and handheld spectrometers to predict low concentrations of urea, glycine, taurine, and melamine in whey protein powder (WPP). Effectiveness of scanning samples through optical glass and polyethylene bags was also tested for the handheld NIRS. WPP was adulterated up to six concentration levels from 0.5% to 3% w/w. The two spectrometers were used to obtain three datasets of 819 diffuse reflectance spectra each that were pretreated before linear discriminant analysis (LDA) and regression (PLSR). Pretreatment was effective and revealed important absorption bands that could be correlated with the chemical properties of the mixtures. Benchtop NIR spectrometer showed the best results in LDA and PLSR but handheld NIR spectrometers showed comparatively good results. There were high prediction accuracies and low errors attesting to the robustness of the developed PLSR models using independent test set validation. Both the plastic bag and optical glass gave good results with accuracies depending on the adulterant of interest and can be used for field applications.


Assuntos
Nitrogênio/análise , Espectroscopia de Luz Próxima ao Infravermelho/métodos , Proteínas do Soro do Leite/análise , Contaminação de Alimentos/análise , Glicina/análise , Reprodutibilidade dos Testes , Taurina/análise , Triazinas/análise , Ureia/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA