Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Pharmacol ; 91(5): 533-544, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28280061

RESUMO

The ß2 adrenergic receptor (ß2AR) increases intracellular Ca2+ in a variety of cell types. By combining pharmacological and genetic manipulations, we reveal a novel mechanism through which the ß2AR promotes Ca2+ mobilization (pEC50 = 7.32 ± 0.10) in nonexcitable human embryonic kidney (HEK)293S cells. Downregulation of Gs with sustained cholera toxin pretreatment and the use of Gs-null HEK293 (∆Gs-HEK293) cells generated using the clustered regularly interspaced short palindromic repeat-associated protein-9 nuclease (CRISPR/Cas9) system, combined with pharmacological modulation of cAMP formation, revealed a Gs-dependent but cAMP-independent increase in intracellular Ca2+ following ß2AR stimulation. The increase in cytoplasmic Ca2+ was inhibited by P2Y purinergic receptor antagonists as well as a dominant-negative mutant form of Gq, a Gq-selective inhibitor, and an inositol 1,4,5-trisphosphate (IP3) receptor antagonist, suggesting a role for this Gq-coupled receptor family downstream of the ß2AR activation. Consistent with this mechanism, ß2AR stimulation promoted the extracellular release of ATP, and pretreatment with apyrase inhibited the ß2AR-promoted Ca2+ mobilization. Together, these data support a model whereby the ß2AR stimulates a Gs-dependent release of ATP, which transactivates Gq-coupled P2Y receptors through an inside-out mechanism, leading to a Gq- and IP3-dependent Ca2+ mobilization from intracellular stores. Given that ß2AR and P2Y receptors are coexpressed in various tissues, this novel signaling paradigm could be physiologically important and have therapeutic implications. In addition, this study reports the generation and validation of HEK293 cells deleted of Gs using the CRISPR/Cas9 genome editing technology that will undoubtedly be powerful tools to study Gs-dependent signaling.


Assuntos
Cálcio/metabolismo , Receptores Purinérgicos P2Y/metabolismo , Receptores Purinérgicos P2/metabolismo , Trifosfato de Adenosina/metabolismo , Toxina da Cólera/farmacologia , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Proteínas de Ligação ao GTP/metabolismo , Técnicas de Inativação de Genes , Células HEK293 , Humanos , Receptores Purinérgicos P2/genética , Receptores Purinérgicos P2Y/genética , Transdução de Sinais , Ativação Transcricional
2.
Nat Commun ; 7: 12178, 2016 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-27397672

RESUMO

Endocytosis and intracellular trafficking of receptors are pivotal to maintain physiological functions and drug action; however, robust quantitative approaches are lacking to study such processes in live cells. Here we present new bioluminescence resonance energy transfer (BRET) sensors to quantitatively monitor G protein-coupled receptors (GPCRs) and ß-arrestin trafficking. These sensors are based on bystander BRET and use the naturally interacting chromophores luciferase (RLuc) and green fluorescent protein (rGFP) from Renilla. The versatility and robustness of this approach are exemplified by anchoring rGFP at the plasma membrane or in endosomes to generate high dynamic spectrometric BRET signals on ligand-promoted recruitment or sequestration of RLuc-tagged proteins to, or from, specific cell compartments, as well as sensitive subcellular BRET imaging for protein translocation visualization. These sensors are scalable to high-throughput formats and allow quantitative pharmacological studies of GPCR trafficking in real time, in live cells, revealing ligand-dependent biased trafficking of receptor/ß-arrestin complexes.


Assuntos
Técnicas de Transferência de Energia por Ressonância de Bioluminescência/métodos , Membrana Celular/metabolismo , Endossomos/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , beta-Arrestinas/metabolismo , Proteínas de Fluorescência Verde , Células HEK293 , Humanos , Luciferases , Transporte Proteico
3.
Proc Natl Acad Sci U S A ; 110(52): E5088-97, 2013 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-24309376

RESUMO

Short lipidated peptide sequences derived from various intracellular loop regions of G protein-coupled receptors (GPCRs) are named pepducins and act as allosteric modulators of a number of GPCRs. Recently, a pepducin selectively targeting the C-X-C chemokine receptor type 4 (CXCR4) was found to be an allosteric agonist, active in both cell-based assays and in vivo. However, the precise mechanism of action of this class of ligands remains poorly understood. In particular, given the diversity of signaling effectors that can be engaged by a given receptor, it is not clear whether pepducins can show biased signaling leading to functional selectivity. To explore the ligand-biased potential of pepducins, we assessed the effect of the CXCR4 selective pepducin, ATI-2341, on the ability of the receptor to engage the inhibitory G proteins (Gi1, Gi2 and Gi3), G13, and ß-arrestins. Using bioluminescence resonance energy transfer-based biosensors, we found that, in contrast to the natural CXCR4 ligand, stromal cell-derived factor-1α, which promotes the engagement of the three Gi subtypes, G13 and the two ß-arrestins, ATI-2341 leads to the engagement of the Gi subtypes but not G13 or the ß-arrestins. Calculation of the transduction ratio for each pathway revealed a strong negative bias of ATI-2341 toward G13 and ß-arrestins, revealing functional selectivity for the Gi pathways. The negative bias toward ß-arrestins results from the reduced ability of the pepducin to promote GPCR kinase-mediated phosphorylation of the receptor. In addition to revealing ligand-biased signaling of pepducins, these findings shed some light on the mechanism of action of a unique class of allosteric regulators.


Assuntos
Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/agonistas , Células-Tronco Hematopoéticas/metabolismo , Lipopeptídeos/metabolismo , Receptores CXCR4/metabolismo , Técnicas de Transferência de Energia por Ressonância de Bioluminescência , Western Blotting , Citometria de Fluxo , Subunidades alfa G12-G13 de Proteínas de Ligação ao GTP/metabolismo , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/metabolismo , Células HEK293 , Humanos
4.
Adv Exp Med Biol ; 961: 397-410, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23224898

RESUMO

The pH milieu of the central and peripheral nervous systems is an important determinant of neuronal excitability, function, and survival. In mammals, neural acid-base homeostasis is coordinately regulated by ion transporters belonging to the Na(+)/H(+) exchanger (NHE) and bicarbonate transporter gene families. However, the relative contributions of individual isoforms within the respective families are not fully understood. This report focuses on the NHE family, specifically the plasma membrane-type NHE5 which is preferentially transcribed in brain, but the distribution of the native protein has not been extensively characterized. To this end, we generated a rabbit polyclonal antibody that specifically recognizes NHE5. In both central (cortex, hippocampus) and peripheral (superior cervical ganglia, SCG) nervous tissue of mice, NHE5 immunostaining was punctate and highly concentrated in the somas and to lesser amounts in the dendrites of neurons. Very little signal was detected in axons. Similarly, in primary cultures of differentiated SCG neurons, NHE5 localized predominantly to vesicles in the somatodendritic compartment, though some immunostaining was also evident in punctate vesicles along the axons. NHE5 was also detected predominantly in intracellular vesicles of cultured SCG glial cells. Dual immunolabeling of SCG neurons showed that NHE5 did not colocalize with markers for early endosomes (EEA1) or synaptic vesicles (synaptophysin), but did partially colocalize with the transferrin receptor, a marker of recycling endosomes. Collectively, these data suggest that NHE5 partitions into a unique vesicular pool in neurons that shares some characteristics of recycling endosomes where it may serve as an important regulated store of functional transporters required to maintain cytoplasmic pH homeostasis.


Assuntos
Axônios/metabolismo , Encéfalo/metabolismo , Endossomos/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Neuroglia/metabolismo , Trocadores de Sódio-Hidrogênio/metabolismo , Vesículas Sinápticas/metabolismo , Animais , Encéfalo/citologia , Células Cultivadas , Endossomos/genética , Concentração de Íons de Hidrogênio , Camundongos , Proteínas do Tecido Nervoso/genética , Neuroglia/citologia , Coelhos , Trocadores de Sódio-Hidrogênio/genética , Vesículas Sinápticas/genética , Proteínas de Transporte Vesicular/genética , Proteínas de Transporte Vesicular/metabolismo
5.
J Biol Chem ; 286(13): 11456-68, 2011 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-21296876

RESUMO

Internalization of the Na(+)/H(+) exchanger NHE5 into recycling endosomes is enhanced by the endocytic adaptor proteins ß-arrestin1 and -2, best known for their preferential recognition of ligand-activated G protein-coupled receptors (GPCRs). However, the mechanism underlying their atypical association with non-GPCRs, such as NHE5, is unknown. In this study, we identified a highly acidic, serine/threonine-rich, di-isoleucine motif (amino acids 697-723) in the cytoplasmic C terminus of NHE5 that is recognized by ß-arrestin2. Gross deletions of this site decreased the state of phosphorylation of NHE5 as well as its binding and responsiveness to ß-arrestin2 in intact cells. More refined in vitro analyses showed that this site was robustly phosphorylated by the acidotropic protein kinase CK2, whereas other kinases, such as CK1 or the GPCR kinase GRK2, were considerably less potent. Simultaneous mutation of five Ser/Thr residues within 702-714 to Ala ((702)ST/AA(714)) abolished phosphorylation and binding of ß-arrestin2. In transfected cells, the CK2 catalytic α subunit formed a complex with NHE5 and decreased wild-type but not (702)ST/AA(714) NHE5 activity, further supporting a regulatory role for this kinase. The rate of internalization of (702)ST/AA(714) was also diminished and relatively insensitive to overexpression of ß-arrestin2. However, unlike in vitro, this mutant retained its ability to form a complex with ß-arrestin2 despite its lack of responsiveness. Additional mutations of two di-isoleucine-based motifs (I697A/L698A and I722A/I723A) that immediately flank the acidic cluster, either separately or together, were required to disrupt their association. These data demonstrate that discrete elements of an elaborate sorting signal in NHE5 contribute to ß-arrestin2 binding and trafficking along the recycling endosomal pathway.


Assuntos
Arrestinas/metabolismo , Endocitose/fisiologia , Endossomos/metabolismo , Sinais Direcionadores de Proteínas/fisiologia , Trocadores de Sódio-Hidrogênio/metabolismo , Motivos de Aminoácidos , Substituição de Aminoácidos , Arrestinas/genética , Caseína Quinase I/genética , Caseína Quinase I/metabolismo , Caseína Quinase II/genética , Caseína Quinase II/metabolismo , Linhagem Celular , Endossomos/genética , Quinase 2 de Receptor Acoplado a Proteína G/genética , Quinase 2 de Receptor Acoplado a Proteína G/metabolismo , Humanos , Mutação de Sentido Incorreto , Ligação Proteica/fisiologia , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Estrutura Terciária de Proteína , Transporte Proteico/fisiologia , Trocadores de Sódio-Hidrogênio/genética , beta-Arrestinas
6.
Proc Natl Acad Sci U S A ; 102(8): 2790-5, 2005 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-15699339

RESUMO

The neuronal Na(+)/H(+) exchanger NHE5 isoform not only resides in the plasma membrane but also accumulates in recycling vesicles by means of clathrin-mediated endocytosis. To further investigate the underlying molecular mechanisms, a human brain cDNA library was screened for proteins that interact with the cytoplasmic C-terminal region of NHE5 by using yeast two-hybrid methodology. One candidate cDNA identified by this procedure encoded beta-arrestin2, a specialized adaptor/scaffolding protein required for internalization and signaling of members of the G protein-coupled receptor superfamily. Direct interaction between the two proteins was demonstrated in vitro by GST fusion protein pull-down assays. Sequences within the N-terminal receptor activation-recognition domain and the C-terminal secondary receptor-binding domain of beta-arrestin2 conferred strong binding to the C terminus of NHE5. Full-length NHE5 and beta-arrestin2 also associated in intact cells, as revealed by their coimmunoprecipitation from extracts of transfected CHO cells. Moreover, ectopic expression of both proteins caused a redistribution of beta-arrestin2 from the cytoplasm to vesicles containing NHE5, and significantly decreased the abundance of the transporter at the cell surface. Comparable results were also obtained for the beta-arrestin1 isoform. These data reveal a broader role for arrestins in the trafficking of integral plasma membrane proteins than previously recognized.


Assuntos
Arrestinas/metabolismo , Trocadores de Sódio-Hidrogênio/metabolismo , Animais , Arrestinas/química , Sítios de Ligação , Células CHO , Cricetinae , Humanos , Proteínas de Membrana , Fosforilação , Isoformas de Proteínas , Transporte Proteico , Trocadores de Sódio-Hidrogênio/análise , Transfecção , beta-Arrestinas
7.
J Immunol ; 171(7): 3794-800, 2003 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-14500680

RESUMO

Platelet-activating factor (PAF) is a phospholipid with multiple physiological and pathological actions. The PAF receptor (PAFR) belongs to the G protein-coupled, heptahelical receptor superfamily. Recently, we have shown that PAF signals through the Janus kinase (Jak)/STAT pathway and that Tyk2 plays an essential role in PAF-induced PAFR promoter 1 activation. In the present study we found that PAF stimulated Jak2 tyrosine phosphorylation in the monocytic cell line MonoMac-1 as well as in COS-7 cells transfected with PAFR and Jak2 cDNAs. The use of a G protein-uncoupled PAFR (D289A) mutant indicated that Jak2 activation was G protein independent. Interestingly, following PAF stimulation, Jak2 coimmunoprecipitated with PAFR in the presence of active Tyk2, but not with a kinase-inactive Tyk2 mutant, K930I. Moreover, Tyk2-K930I completely blocked PAF-stimulated Jak2 phosphorylation. Gradual deletion of C-terminal residues of the PAFR resulted in progressively decreased Jak2 activation. Deletion of 12 C-terminal residues in mutant V330Stop diminished Jak2 tyrosine phosphorylation by 17%. Further deletions of 25-37 residues from the PAFR C-tail (C317Stop, M311Stop, and T305Stop) resulted in a 50% decrease in Jak2 phosphorylation compared with the wild-type receptor. Complete removal of the C tail resulted in a mutant (K298Stop) that failed to activate Jak2, suggesting that the receptor C-terminal region contains important domains for Jak2 activation. Finally, the coexpression of a minigene encoding the C terminus of PAFR partially inhibited PAF-induced kinase activation. Taken together, our results indicate that PAF activates Jak2 and that Tyk2 and the C-terminal tail of PAFR are of critical importance for PAF-induced Jak2 activation.


Assuntos
Fragmentos de Peptídeos/fisiologia , Fator de Ativação de Plaquetas/metabolismo , Glicoproteínas da Membrana de Plaquetas/fisiologia , Proteínas Tirosina Quinases/metabolismo , Proteínas Tirosina Quinases/fisiologia , Proteínas/fisiologia , Proteínas Proto-Oncogênicas , Receptores Acoplados a Proteínas G/fisiologia , Animais , Células COS , Catálise , Linhagem Celular , Chlorocebus aethiops , DNA Complementar/genética , Ativação Enzimática/fisiologia , Humanos , Janus Quinase 2 , Monócitos/enzimologia , Monócitos/metabolismo , Fosforilação , Glicoproteínas da Membrana de Plaquetas/genética , Proteínas Tirosina Quinases/genética , Proteínas/genética , Receptores Acoplados a Proteínas G/genética , Deleção de Sequência , Transdução de Sinais/fisiologia , TYK2 Quinase , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...