Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Science ; 384(6700): 1117-1121, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38753767

RESUMO

Chemical reactions, in which bonds break and form, are highly dynamic quantum processes. A fundamental question is whether coherence can be preserved in chemical reactions and then harnessed to generate entangled products. Here we investigated this question by studying the 2KRb [Formula: see text][Formula: see text] + Rb2 reaction at 500 nanokelvins, focusing on the nuclear spin degrees of freedom. We prepared the initial nuclear spins in KRb (potassium-rubidium) in an entangled state by lowering the magnetic field to where the spin-spin interaction dominates and characterized the preserved coherence in nuclear spin wave function after the reaction. We observed an interference pattern that is consistent with full coherence at the end of the reaction, suggesting that entanglement prepared within the reactants could be redistributed through the atom-exchange process.

2.
Faraday Discuss ; 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38775173

RESUMO

We propose to coherently control the ultracold 2KRb → K2 + Rb2 reaction product state distribution via quantum interference. By leveraging that the nuclear spin degrees of freedom in the reaction maintain coherence, which was demonstrated in Liu, Zhu et al., arXiv, 2023, arXiv:2310.07620, https://doi.org/10.48550/arXiv.2310.07620, we explore the concept of a "reaction interferometer". Such an interferometer involves splitting one KRb molecular cloud into two, imprinting a well-defined relative phase between them, recombining the clouds for reactions, and measuring the product state distribution. We show that the interference patterns provide a mechanism to coherently control the product states, and specific product channels also serve as an entanglement witness of the atoms in the reactant KRb molecule.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA