Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 357
Filtrar
1.
Virus Evol ; 10(1): veae037, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38774311

RESUMO

Trypanosomatids (Euglenozoa) are a diverse group of unicellular flagellates predominately infecting insects (monoxenous species) or circulating between insects and vertebrates or plants (dixenous species). Monoxenous trypanosomatids harbor a wide range of RNA viruses belonging to the families Narnaviridae, Totiviridae, Qinviridae, Leishbuviridae, and a putative group of tombus-like viruses. Here, we focus on the subfamily Blastocrithidiinae, a previously unexplored divergent group of monoxenous trypanosomatids comprising two related genera: Obscuromonas and Blastocrithidia. Members of the genus Blastocrithidia employ a unique genetic code, in which all three stop codons are repurposed to encode amino acids, with TAA also used to terminate translation. Obscuromonas isolates studied here bear viruses of three families: Narnaviridae, Qinviridae, and Mitoviridae. The latter viral group is documented in trypanosomatid flagellates for the first time. While other known mitoviruses replicate in the mitochondria, those of trypanosomatids appear to reside in the cytoplasm. Although no RNA viruses were detected in Blastocrithidia spp., we identified an endogenous viral element in the genome of B. triatomae indicating its past encounter(s) with tombus-like viruses.

2.
ACS Infect Dis ; 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38753953

RESUMO

Leishmaniasis is a neglected tropical disease; there is currently no vaccine and treatment is reliant upon a handful of drugs suffering from multiple issues including toxicity and resistance. There is a critical need for development of new fit-for-purpose therapeutics, with reduced toxicity and targeting new mechanisms to overcome resistance. One enzyme meriting investigation as a potential drug target in Leishmania is M17 leucyl-aminopeptidase (LAP). Here, we aimed to chemically validate LAP as a drug target in L. major through identification of potent and selective inhibitors. Using RapidFire mass spectrometry, the compounds DDD00057570 and DDD00097924 were identified as selective inhibitors of recombinant Leishmania major LAP activity. Both compounds inhibited in vitro growth of L. major and L. donovani intracellular amastigotes, and overexpression of LmLAP in L. major led to reduced susceptibility to DDD00057570 and DDD00097924, suggesting that these compounds specifically target LmLAP. Thermal proteome profiling revealed that these inhibitors thermally stabilized two M17 LAPs, indicating that these compounds selectively bind to enzymes of this class. Additionally, the selectivity of the inhibitors to act on LmLAP and not against the human ortholog was demonstrated, despite the high sequence similarities LAPs of this family share. Collectively, these data confirm LmLAP as a promising therapeutic target for Leishmania spp. that can be selectively inhibited by drug-like small molecules.

3.
Annu Rev Microbiol ; 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38684082

RESUMO

This review explores the origins of intracellular parasitism, an intriguing facet of symbiosis, where one organism harms its host, potentially becoming deadly. We focus on three distantly related groups of single-celled eukaryotes, namely Kinetoplastea, Holomycota, and Apicomplexa, which contain multiple species-rich lineages of intracellular parasites. Using comparative analysis of morphological, physiological, and molecular features of kinetoplastids, microsporidians, and sporozoans, as well as their closest free-living relatives, we reveal the evolutionary trajectories and adaptations that enabled the transition to intracellular parasitism. Intracellular parasites have evolved various efficient mechanisms for host acquisition and exploitation, allowing them to thrive in a variety of hosts. Each group has developed unique features related to the parasitic lifestyle, involving dedicated protein families associated with host cell invasion, survival, and exit. Indeed, parallel evolution has led to distinct lineages of intracellular parasites employing diverse traits and approaches to achieve similar outcomes.

4.
Parasitology ; : 1-12, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38616408

RESUMO

Trypanosomatids are obligate parasites of animals, predominantly insects and vertebrates, and flowering plants. Monoxenous species, representing the vast majority of trypanosomatid diversity, develop in a single host, whereas dixenous species cycle between two hosts, of which primarily insect serves as a vector. To explore in-depth the diversity of insect trypanosomatids including their co-infections, sequence profiling of their 18S rRNA gene was used for true bugs (Hemiptera; 18% infection rate) and flies (Diptera; 10%) in Cuba. Out of 48 species (molecular operational taxonomic units) belonging to the genera Vickermania (16 spp.), Blastocrithidia (7), Obscuromonas (4), Phytomonas (5), Leptomonas/Crithidia (5), Herpetomonas (5), Wallacemonas (2), Kentomonas (1), Angomonas (1) and two unnamed genera (1 + 1), 38 species have been encountered for the first time. The detected Wallacemonas and Angomonas species constitute the most basal lineages of their respective genera, while Vickermania emerged as the most diverse group. The finding of Leptomonas seymouri, which is known to rarely infect humans, confirms that Dysdercus bugs are its natural hosts. A clear association of Phytomonas with the heteropteran family Pentatomidae hints at its narrow host association with the insect rather than plant hosts. With a focus on multiple infections of a single fly host, using deep Nanopore sequencing of 18S rRNA, we have identified co-infections with up to 8 trypanosomatid species. The fly midgut was usually occupied by several Vickermania species, while Herpetomonas and/or Kentomonas species prevailed in the hindgut. Metabarcoding was instrumental for analysing extensive co-infections and also allowed the identification of trypanosomatid lineages and genera.

5.
Int J Parasitol ; 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38663543

RESUMO

Nearly all aerobic organisms are equipped with catalases, powerful enzymes scavenging hydrogen peroxide and facilitating defense against harmful reactive oxygen species. In trypanosomatids, this enzyme was not present in the common ancestor, yet it had been independently acquired by different lineages of monoxenous trypanosomatids from different bacteria at least three times. This observation posited an obvious question: why was catalase so "sought after" if many trypanosomatid groups do just fine without it? In this work, we analyzed subcellular localization and function of catalase in Leptomonas seymouri. We demonstrated that this enzyme is present in the cytoplasm and a subset of glycosomes, and that its cytoplasmic retention is H2O2-dependent. The ablation of catalase in this parasite is not detrimental in vivo, while its overexpression resulted in a substantially higher parasite load in the experimental infection of Dysdercus peruvianus. We propose that the capacity of studied flagellates to modulate the catalase activity in the midgut of its insect host facilitates their development and protects them from oxidative damage at elevated temperatures.

6.
Environ Microbiol ; 26(3): e16598, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38444221

RESUMO

The benthic biome of the deep-sea floor, one of the largest biomes on Earth, is dominated by diverse and highly productive heterotrophic protists, second only to prokaryotes in terms of biomass. Recent evidence suggests that these protists play a significant role in ocean biogeochemistry, representing an untapped source of knowledge. DNA metabarcoding and environmental sample sequencing have revealed that deep-sea abyssal protists exhibit high levels of specificity and diversity across local regions. This review aims to provide a comprehensive summary of the known heterotrophic protists from the deep-sea floor, their geographic distribution, and their interactions in terms of parasitism and predation. We offer an overview of the most abundant groups and discuss their potential ecological roles. We argue that the exploration of the biodiversity and species-specific features of these protists should be integrated into broader deep-sea research and assessments of how benthic biomes may respond to future environmental changes.


Assuntos
Biodiversidade , Comportamento Predatório , Animais , Biomassa , Planeta Terra , Ecossistema
7.
Nucleic Acids Res ; 52(7): 3870-3885, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38452217

RESUMO

The canonical stop codons of the nuclear genome of the trypanosomatid Blastocrithidia nonstop are recoded. Here, we investigated the effect of this recoding on the mitochondrial genome and gene expression. Trypanosomatids possess a single mitochondrion and protein-coding transcripts of this genome require RNA editing in order to generate open reading frames of many transcripts encoded as 'cryptogenes'. Small RNAs that can number in the hundreds direct editing and produce a mitochondrial transcriptome of unusual complexity. We find B. nonstop to have a typical trypanosomatid mitochondrial genetic code, which presumably requires the mitochondrion to disable utilization of the two nucleus-encoded suppressor tRNAs, which appear to be imported into the organelle. Alterations of the protein factors responsible for mRNA editing were also documented, but they have likely originated from sources other than B. nonstop nuclear genome recoding. The population of guide RNAs directing editing is minimal, yet virtually all genes for the plethora of known editing factors are still present. Most intriguingly, despite lacking complex I cryptogene guide RNAs, these cryptogene transcripts are stochastically edited to high levels.


Assuntos
Núcleo Celular , Genoma Mitocondrial , Edição de RNA , RNA de Transferência , Núcleo Celular/genética , Núcleo Celular/metabolismo , RNA de Transferência/genética , RNA de Transferência/metabolismo , Fases de Leitura Aberta/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Trypanosomatina/genética , Trypanosomatina/metabolismo , Códon/genética , Mitocôndrias/genética , Mitocôndrias/metabolismo , Códon de Terminação/genética , RNA Guia de Cinetoplastídeos/genética , RNA Guia de Cinetoplastídeos/metabolismo , Código Genético , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo
8.
BMC Genomics ; 25(1): 184, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38365628

RESUMO

BACKGROUND: Almost all extant organisms use the same, so-called canonical, genetic code with departures from it being very rare. Even more exceptional are the instances when a eukaryote with non-canonical code can be easily cultivated and has its whole genome and transcriptome sequenced. This is the case of Blastocrithidia nonstop, a trypanosomatid flagellate that reassigned all three stop codons to encode amino acids. RESULTS: We in silico predicted the metabolism of B. nonstop and compared it with that of the well-studied human parasites Trypanosoma brucei and Leishmania major. The mapped mitochondrial, glycosomal and cytosolic metabolism contains all typical features of these diverse and important parasites. We also provided experimental validation for some of the predicted observations, concerning, specifically presence of glycosomes, cellular respiration, and assembly of the respiratory complexes. CONCLUSIONS: In an unusual comparison of metabolism between a parasitic protist with a massively altered genetic code and its close relatives that rely on a canonical code we showed that the dramatic differences on the level of nucleic acids do not seem to be reflected in the metabolisms. Moreover, although the genome of B. nonstop is extremely AT-rich, we could not find any alterations of its pyrimidine synthesis pathway when compared to other trypanosomatids. Hence, we conclude that the dramatic alteration of the genetic code of B. nonstop has no significant repercussions on the metabolism of this flagellate.


Assuntos
Parasitos , Trypanosoma brucei brucei , Trypanosomatina , Animais , Códon de Terminação , Eucariotos/genética , Código Genético , Parasitos/genética , Trypanosoma brucei brucei/genética , Trypanosomatina/genética
9.
BMC Biol ; 22(1): 15, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38273274

RESUMO

The mitochondria contain their own genome derived from an alphaproteobacterial endosymbiont. From thousands of protein-coding genes originally encoded by their ancestor, only between 1 and about 70 are encoded on extant mitochondrial genomes (mitogenomes). Thanks to a dramatically increasing number of sequenced and annotated mitogenomes a coherent picture of why some genes were lost, or relocated to the nucleus, is emerging. In this review, we describe the characteristics of mitochondria-to-nucleus gene transfer and the resulting varied content of mitogenomes across eukaryotes. We introduce a 'burst-upon-drift' model to best explain nuclear-mitochondrial population genetics with flares of transfer due to genetic drift.


Assuntos
Genoma Mitocondrial , Evolução Molecular , Eucariotos/genética , Mitocôndrias/genética , Sequência de Bases , Filogenia
11.
Curr Biol ; 34(2): R55-R58, 2024 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-38262358

RESUMO

The microbial eukaryotes known as protists are of immense importance for our understanding of eukaryotic biology. Although it is often difficult to convince funding bodies to sponsor research projects aimed at finding new protist lineages, such discoveries usually provide new and fundamental insights into cell and evolutionary biology, and ecology.


Assuntos
Evolução Biológica , Ecologia
12.
Leukemia ; 38(1): 21-30, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38001170

RESUMO

Measurable residual disease (MRD) monitoring in childhood acute myeloid leukemia (AML) is used to assess response to treatment and for early detection of imminent relapse. In childhood AML, MRD is typically evaluated using flow cytometry, or by quantitative detection of leukemia-specific aberrations at the mRNA level. Both methods, however, have significant limitations. Recently, we demonstrated the feasibility of MRD monitoring in selected subgroups of AML at the genomic DNA (gDNA) level. To evaluate the potential of gDNA-based MRD monitoring across all AML subtypes, we conducted a comprehensive analysis involving 133 consecutively diagnosed children. Integrating next-generation sequencing into the diagnostic process, we identified (presumed) primary genetic aberrations suitable as MRD targets in 97% of patients. We developed patient-specific quantification assays and monitored MRD in 122 children. The gDNA-based MRD monitoring via quantification of primary aberrations with a sensitivity of at least 10-4 was possible in 86% of patients; via quantification with sensitivity of 5 × 10-4, of secondary aberrations, or at the mRNA level in an additional 8%. Importantly, gDNA-based MRD exhibited independent prognostic value at early time-points in patients stratified to intermediate-/high-risk treatment arms. Our study demonstrates the broad applicability, feasibility, and clinical significance of gDNA-based MRD monitoring in childhood AML.


Assuntos
Leucemia Mieloide Aguda , Humanos , Criança , Leucemia Mieloide Aguda/diagnóstico , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/terapia , Estudos de Coortes , Recidiva , Prognóstico , Neoplasia Residual/diagnóstico , Neoplasia Residual/genética , Citometria de Fluxo , RNA Mensageiro/genética , Genômica
13.
Trends Parasitol ; 40(2): 96-99, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38065790

RESUMO

The number of sequenced trypanosomatid genomes has reached a critical point so that they are now available for almost all genera and subgenera. Based on this, we inferred a phylogenomic tree and propose it as a framework to study trait evolution together with some examples of how to do it.


Assuntos
Trypanosomatina , Filogenia , Trypanosomatina/genética
14.
Trends Microbiol ; 32(2): 128-131, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38102035

RESUMO

Protists are key players in the biosphere. Here, we provide a perspective on integrating protist culturing with omics approaches, imaging, and high-throughput single-cell manipulation strategies, concluding with actions required for a successful return of the golden age of protist culturing.


Assuntos
Eucariotos , Eucariotos/genética , Multiômica
15.
Mar Life Sci Technol ; 5(4): 551-563, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38045545

RESUMO

Currently, new species of freshwater fish trypanosomes, which are economically important parasites, are being described based on subjectively selected features, i.e., their cell morphology and the host species. We have performed detailed phylogenetic and haplotype diversity analyses of all 18S rRNA genes available for freshwater fish trypanosomes, including the newly obtained sequences of Trypanosoma carassii and Trypanosoma danilewskyi. Based on a sequence similarity of 99.5%, we divide these trypanosomes into 15 operational taxonomic units, and propose three nominal scenarios for distinguishing T. carassii and other aquatic trypanosomes. We find evidences for the existence of a low number of freshwater fish trypanosomes, with T. carassii having the widest geographic and host ranges. Our analyses support the existence of an umbrella complex composed of T. carassii and two sister species. Supplementary Information: The online version contains supplementary material available at 10.1007/s42995-023-00191-0.

16.
mBio ; 14(5): e0192123, 2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-37737610

RESUMO

IMPORTANCE: The knowledge of cell biology of a eukaryotic group is essential for correct interpretation of ecological and molecular data. Although diplonemid protists are one of the most species-rich lineages of marine eukaryotes, only very fragmentary information is available about the cellular architecture of this taxonomically diverse group. Here, a large serial block-face scanning electron microscopy data set complemented with light and fluorescence microscopy allowed the first detailed three-dimensional reconstruction of a diplonemid species. We describe numerous previously unknown peculiarities of the cellular architecture and cell division characteristic for diplonemid flagellates, and illustrate the obtained results with multiple three-dimensional models, comprehensible for non-specialists in protist ultrastructure.


Assuntos
Eucariotos , Imageamento Tridimensional , Imageamento Tridimensional/métodos , Organelas , Microscopia Eletrônica de Varredura
17.
Cell Rep ; 42(9): 113083, 2023 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-37669165

RESUMO

We have generated a high-confidence mitochondrial proteome (MitoTag) of the Trypanosoma brucei procyclic stage containing 1,239 proteins. For 337 of these, a mitochondrial localization had not been described before. We use the TrypTag dataset as a foundation and take advantage of the properties of the fluorescent protein tag that causes aberrant but fortuitous accumulation of tagged matrix and inner membrane proteins near the kinetoplast (mitochondrial DNA). Combined with transmembrane domain predictions, this characteristic allowed categorization of 1,053 proteins into mitochondrial sub-compartments, the detection of unique matrix-localized fucose and methionine synthesis, and the identification of new kinetoplast proteins, which showed kinetoplast-linked pyrimidine synthesis. Moreover, disruption of targeting signals by tagging allowed mapping of the mode of protein targeting to these sub-compartments, identifying a set of C-tail anchored outer mitochondrial membrane proteins and mitochondrial carriers likely employing multiple target peptides. This dataset represents a comprehensive, updated mapping of the mitochondrion.


Assuntos
Parasitos , Trypanosoma brucei brucei , Animais , Trypanosoma brucei brucei/metabolismo , Proteínas Mitocondriais/metabolismo , Proteínas de Protozoários/metabolismo , Mitocôndrias/metabolismo , Parasitos/metabolismo , Biologia
18.
Trends Parasitol ; 39(11): 902-912, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37679284

RESUMO

The African trypanosome, Trypanosoma brucei, has developed into a flexible and robust experimental model for molecular and cellular parasitology, allowing us to better combat these and related parasites that cause worldwide suffering. Diminishing case numbers, due to efficient public health efforts, and recent development of new drug treatments have reduced the need for continued study of T. brucei in a disease context. However, we argue that this pathogen has been instrumental in revolutionary discoveries that have widely informed molecular and cellular biology and justifies continuing research as an experimental model. Ongoing work continues to contribute towards greater understanding of both diversified and conserved biological features. We discuss multiple examples where trypanosomes pushed the boundaries of cell biology and hope to inspire researchers to continue exploring these remarkable protists as tools for magnifying the inner workings of cells.


Assuntos
Trypanosoma brucei brucei , Trypanosoma , Trypanosoma/genética , Trypanosoma brucei brucei/genética , Biologia Molecular
19.
BMC Biol ; 21(1): 191, 2023 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-37697369

RESUMO

BACKGROUND: Trypanosomatids are parasitic flagellates well known because of some representatives infecting humans, domestic animals, and cultural plants. Many trypanosomatid species bear RNA viruses, which, in the case of human pathogens Leishmania spp., influence the course of the disease. One of the close relatives of leishmaniae, Leptomonas pyrrhocoris, has been previously shown to harbor viruses of the groups not documented in other trypanosomatids. At the same time, this species has a worldwide distribution and high prevalence in the natural populations of its cosmopolitan firebug host. It therefore represents an attractive model to study the diversity of RNA viruses. RESULTS: We surveyed 106 axenic cultures of L. pyrrhocoris and found that 64 (60%) of these displayed 2-12 double-stranded RNA fragments. The analysis of next-generation sequencing data revealed four viral groups with seven species, of which up to five were simultaneously detected in a single trypanosomatid isolate. Only two of these species, a tombus-like virus and an Ostravirus, were earlier documented in L. pyrrhocoris. In addition, there were four new species of Leishbuviridae, the family encompassing trypanosomatid-specific viruses, and a new species of Qinviridae, the family previously known only from metatranscriptomes of invertebrates. Currently, this is the only qinvirus with an unambiguously determined host. Our phylogenetic inferences suggest reassortment in the tombus-like virus owing to the interaction of different trypanosomatid strains. Two of the new Leishbuviridae members branch early on the phylogenetic tree of this family and display intermediate stages of genomic segment reduction between insect Phenuiviridae and crown Leishbuviridae. CONCLUSIONS: The unprecedented wide range of viruses in one protist species and the simultaneous presence of up to five viral species in a single Leptomonas pyrrhocoris isolate indicate the uniqueness of this flagellate. This is likely determined by the peculiarity of its firebug host, a highly abundant cosmopolitan species with several habits ensuring wide distribution and profuseness of L. pyrrhocoris, as well as its exposure to a wider spectrum of viruses compared to other trypanosomatids combined with a limited ability to transmit these viruses to its relatives. Thus, L. pyrrhocoris represents a suitable model to study the adoption of new viruses and their relationships with a protist host.


Assuntos
Vírus de RNA , Trypanosomatina , Animais , Humanos , Filogenia , Vírus de RNA/genética , Trypanosomatina/genética , Animais Domésticos , Sequenciamento de Nucleotídeos em Larga Escala
20.
BMC Genomics ; 24(1): 471, 2023 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-37605127

RESUMO

BACKGROUND: Protists of the family Trypanosomatidae (phylum Euglenozoa) have gained notoriety as parasites affecting humans, domestic animals, and agricultural plants. However, the true extent of the group's diversity spreads far beyond the medically and veterinary relevant species. We address several knowledge gaps in trypanosomatid research by undertaking sequencing, assembly, and analysis of genomes from previously overlooked representatives of this protistan group. RESULTS: We assembled genomes for twenty-one trypanosomatid species, with a primary focus on insect parasites and Trypanosoma spp. parasitizing non-human hosts. The assemblies exhibit sizes consistent with previously sequenced trypanosomatid genomes, ranging from approximately 18 Mb for Obscuromonas modryi to 35 Mb for Crithidia brevicula and Zelonia costaricensis. Despite being the smallest, the genome of O. modryi has the highest content of repetitive elements, contributing nearly half of its total size. Conversely, the highest proportion of unique DNA is found in the genomes of Wallacemonas spp., with repeats accounting for less than 8% of the assembly length. The majority of examined species exhibit varying degrees of aneuploidy, with trisomy being the most frequently observed condition after disomy. CONCLUSIONS: The genome of Obscuromonas modryi represents a very unusual, if not unique, example of evolution driven by two antidromous forces: i) increasing dependence on the host leading to genomic shrinkage and ii) expansion of repeats causing genome enlargement. The observed variation in somy within and between trypanosomatid genera suggests that these flagellates are largely predisposed to aneuploidy and, apparently, exploit it to gain a fitness advantage. High heterogeneity in the genome size, repeat content, and variation in chromosome copy numbers in the newly-sequenced species highlight the remarkable genome plasticity exhibited by trypanosomatid flagellates. These new genome assemblies are a robust foundation for future research on the genetic basis of life cycle changes and adaptation to different hosts in the family Trypanosomatidae.


Assuntos
Trypanosomatina , Animais , Trypanosomatina/genética , Tamanho do Genoma , Aclimatação , Agricultura , Aneuploidia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...