RESUMO
OBJECTIVES: The present study compared physical, mechanical, and biologic characteristics of 4 clinically available surgical sealants for cardiovascular repair. METHODS: BioGlue (Cryolife Inc, Kennesaw, Ga), PreveLeak (Mallinckrodt Pharmaceuticals, St Louis, Mo), Tridyne VS (BD, Franklin Lakes, NJ), and Coseal (Baxter Healthcare Corporation, Westlake Village, Calif) were compared for the following properties: hydrated swelling, cytocompatibility, burst strength, biaxial stretching (elasticity), and in vitro degradation. RESULTS: Sealants showed a wide range of swelling upon hydration. By gravimetric and volumetric measurement, swelling was greatest for Coseal followed by Tridyne VS, BioGlue, and PreveLeak. Tridyne VS was the most cytocompatible based on Alamar Blue assay results, supporting 85% cell survival compared with 36% to 39% survival with the other sealants. All sealants withstood pressure above mean arterial pressure (70-110 mm Hg) and physiologic systolic blood pressure (90-140 mm Hg) in an ex vivo arterial flow burst model; lowest peak pressure at failure was PreveLeak at 235 ± 48 mm Hg, and highest peak pressure at failure was BioGlue at 596 ± 72 mm Hg. Biaxial tensile testing showed no differences in elasticity between ex vivo porcine aorta and carotid arteries and Tridyne VS or Coseal, and BioGlue and PreveLeak were significantly stiffer. In vitro degradation time for Coseal was 6 days and 21 days for Tridyne VS. No degradation was observed in BioGlue or PreveLeak for 30 days. CONCLUSIONS: Although all sealants withstood supraphysiologic arterial pressure, there were differences in characteristics that may be important in clinical outcome. Coseal degradation time was short compared with other sealants, whereas BioGlue and PreveLeak showed a significant compliance mismatch with native porcine carotid artery. Tridyne VS was significantly more cytocompatible than the other 3 sealants.
Assuntos
Materiais Biocompatíveis/uso terapêutico , Adesivos Teciduais/uso terapêutico , Animais , Aorta/cirurgia , Procedimentos Cirúrgicos Cardiovasculares , Artérias Carótidas/cirurgia , Elasticidade , Humanos , Fenômenos Mecânicos , Polietilenoglicóis/uso terapêutico , Pressão , Proteínas/uso terapêutico , Suínos , Resistência à TraçãoRESUMO
OBJECTIVE: Ideal heart valve solutions aim to provide thrombosis-free durability. A scaffold-based polycarbonate urethane urea tissue-engineered heart valve designed to mimic native valve microstructure and function was used. This study examined the acute in vivo function of a stented tissue-engineered heart valve in a porcine model. METHODS: Trileaflet valves were fabricated by electrospinning polycarbonate urethane urea using double component fiber deposition. The tissue-engineered heart valve was mounted on an AZ31 magnesium alloy biodegradable stent frame. Five 80-kg Yorkshire pigs underwent open tissue-engineered heart valve implantation on cardiopulmonary bypass in the pulmonary position. Tissue-engineered heart valve function was echocardiographically evaluated immediately postimplant and at planned study end points at 1, 4, 8, and 12 hours. Explanted valves underwent biaxial mechanical testing and scanning electron microscopy for ultrastructural analysis and thrombosis detection. RESULTS: All 5 animals underwent successful valve implantation. All were weaned from cardiopulmonary bypass, closed, and recovered until harvest study end point except 1 animal that was found to have congenital tricuspid valve dysplasia and that was euthanized postimplant. All 5 cases revealed postcardiopulmonary bypass normal leaflet function, no regurgitation, and an average peak velocity of 2 m/s, unchanged at end point. All tissue-engineered heart valve leaflets retained microstructural architecture with no platelet activation or thrombosis by scanning electron microscopy. There was microscopic evidence of fibrin deposition on 2 of 5 stent frames, not on the tissue-engineered heart valve. Biaxial stress examination revealed retained postimplant mechanics of tissue-engineered heart valve fibers without functional or ultrastructural degradation. CONCLUSIONS: A biodegradable elastomeric heart valve scaffold for in situ tissue-engineered leaflet replacement is acutely functional and devoid of leaflet microthrombosis.
Assuntos
Implantes Absorvíveis , Ligas/química , Elastômeros/química , Implante de Prótese de Valva Cardíaca/instrumentação , Próteses Valvulares Cardíacas , Valva Pulmonar/cirurgia , Engenharia Tecidual/métodos , Alicerces Teciduais , Animais , Implante de Prótese de Valva Cardíaca/efeitos adversos , Teste de Materiais , Modelos Animais , Desenho de Prótese , Falha de Prótese , Valva Pulmonar/diagnóstico por imagem , Valva Pulmonar/ultraestrutura , Estresse Mecânico , Sus scrofa , Trombose/etiologia , Fatores de TempoRESUMO
OBJECTIVE: Tissue-engineered vascular grafts containing adipose-derived mesenchymal stem cells offer an alternative to small-diameter vascular grafts currently used in cardiac and lower-extremity revascularization procedures. Adipose-derived, mesenchymal stem cell-infused, tissue-engineered vascular grafts have been shown to promote remodeling and vascular homeostasis in vivo and offer a possible treatment solution for those with cardiovascular disease. Unfortunately, the time needed to cultivate adipose-derived mesenchymal stem cells remains a large hurdle for tissue-engineered vascular grafts as a treatment option. The purpose of this study was to determine if stromal vascular fraction (known to contain progenitor cells) seeded tissue-engineered vascular grafts would remain patent in vivo and remodel, allowing for a "same-day" process for tissue-engineered vascular graft fabrication and implantation. METHODS: Stromal vascular fraction, obtained from adult human adipose tissue, was seeded within 4 hours after acquisition from the patient onto poly(ester urethane)urea bilayered scaffolds using a customized rotational vacuum seeding device. Constructs were then surgically implanted as abdominal aortic interposition grafts in Lewis rats. RESULTS: Findings revealed patency in 5 of 7 implanted scaffolds at 8 weeks, along with neotissue formation and remodeling occurring in patent tissue-engineered vascular grafts. Patency was documented using angiography and gross inspection, and remodeling and vascular components were detected using immunofluorescent chemistry. CONCLUSIONS: A "same-day" cell-seeded, tissue-engineered vascular graft can remain patent after implantation in vivo, with neotissue formation and remodeling occurring by 8 weeks.