Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Rep ; 42(9): 113047, 2023 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-37651234

RESUMO

CD4 T cells are central effectors of anti-cancer immunity and immunotherapy, yet the regulation of CD4 tumor-specific T (TTS) cells is unclear. We demonstrate that CD4 TTS cells are quickly primed and begin to divide following tumor initiation. However, unlike CD8 TTS cells or exhaustion programming, CD4 TTS cell proliferation is rapidly frozen in place by a functional interplay of regulatory T cells and CTLA4. Together these mechanisms paralyze CD4 TTS cell differentiation, redirecting metabolic circuits, and reducing their accumulation in the tumor. The paralyzed state is actively maintained throughout cancer progression and CD4 TTS cells rapidly resume proliferation and functional differentiation when the suppressive constraints are alleviated. Overcoming their paralysis established long-term tumor control, demonstrating the importance of rapidly crippling CD4 TTS cells for tumor progression and their potential restoration as therapeutic targets.


Assuntos
Linfócitos T CD4-Positivos , Neoplasias , Humanos , Linfócitos T CD8-Positivos , Neoplasias/metabolismo , Linfócitos T Reguladores , Linfonodos
2.
bioRxiv ; 2023 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-37131587

RESUMO

CD4 T cells are important effectors of anti-tumor immunity, yet the regulation of CD4 tumor-specific T (T TS ) cells during cancer development is still unclear. We demonstrate that CD4 T TS cells are initially primed in the tumor draining lymph node and begin to divide following tumor initiation. Distinct from CD8 T TS cells and previously defined exhaustion programs, CD4 T TS cell proliferation is rapidly frozen in place and differentiation stunted by a functional interplay of T regulatory cells and both intrinsic and extrinsic CTLA4 signaling. Together these mechanisms paralyze CD4 T TS cell differentiation, redirecting metabolic and cytokine production circuits, and reducing CD4 T TS cell accumulation in the tumor. Paralysis is actively maintained throughout cancer progression and CD4 T TS cells rapidly resume proliferation and functional differentiation when both suppressive reactions are alleviated. Strikingly, Treg depletion alone reciprocally induced CD4 T TS cells to themselves become tumor-specific Tregs, whereas CTLA4 blockade alone failed to promote T helper differentiation. Overcoming their paralysis established long-term tumor control, demonstrating a novel immune evasion mechanism that specifically cripples CD4 T TS cells to favor tumor progression.

3.
Immunity ; 55(12): 2369-2385.e10, 2022 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-36370712

RESUMO

Type I and II interferons (IFNs) stimulate pro-inflammatory programs that are critical for immune activation, but also induce immune-suppressive feedback circuits that impede control of cancer growth. Here, we sought to determine how these opposing programs are differentially induced. We demonstrated that the transcription factor interferon regulatory factor 2 (IRF2) was expressed by many immune cells in the tumor in response to sustained IFN signaling. CD8+ T cell-specific deletion of IRF2 prevented acquisition of the T cell exhaustion program within the tumor and instead enabled sustained effector functions that promoted long-term tumor control and increased responsiveness to immune checkpoint and adoptive cell therapies. The long-term tumor control by IRF2-deficient CD8+ T cells required continuous integration of both IFN-I and IFN-II signals. Thus, IRF2 is a foundational feedback molecule that redirects IFN signals to suppress T cell responses and represents a potential target to enhance cancer control.


Assuntos
Interferon Tipo I , Neoplasias , Humanos , Fator Regulador 2 de Interferon/genética , Linfócitos T CD8-Positivos , Fatores de Transcrição , Exaustão das Células T , Neoplasias/patologia
4.
Nat Immunol ; 22(12): 1524-1537, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34795443

RESUMO

Inhibiting PD-1:PD-L1 signaling has transformed therapeutic immune restoration. CD4+ T cells sustain immunity in chronic infections and cancer, yet little is known about how PD-1 signaling modulates CD4+ helper T (TH) cell responses or the ability to restore CD4+ TH-mediated immunity by checkpoint blockade. We demonstrate that PD-1:PD-L1 specifically suppressed CD4+ TH1 cell amplification, prevents CD4+ TH1 cytokine production and abolishes CD4+ cytotoxic killing capacity during chronic infection in mice. Inhibiting PD-L1 rapidly restored these functions, while simultaneously amplifying and activating TH1-like T regulatory cells, demonstrating a system-wide CD4-TH1 recalibration. This effect coincided with decreased T cell antigen receptor signaling, and re-directed type I interferon (IFN) signaling networks towards dominant IFN-γ-mediated responses. Mechanistically, PD-L1 blockade specifically targeted defined populations with pre-established, but actively suppressed proliferative potential, with limited impact on minimally cycling TCF-1+ follicular helper T cells, despite high PD-1 expression. Thus, CD4+ T cells require unique differentiation and functional states to be targets of PD-L1-directed suppression and therapeutic restoration.


Assuntos
Antígeno B7-H1/antagonistas & inibidores , Inibidores de Checkpoint Imunológico/farmacologia , Ativação Linfocitária/efeitos dos fármacos , Coriomeningite Linfocítica/tratamento farmacológico , Vírus da Coriomeningite Linfocítica/imunologia , Células Th1/efeitos dos fármacos , Transferência Adotiva , Animais , Antígeno B7-H1/genética , Antígeno B7-H1/metabolismo , Proliferação de Células/efeitos dos fármacos , Doença Crônica , Citocinas/metabolismo , Citotoxicidade Imunológica/efeitos dos fármacos , Modelos Animais de Doenças , Feminino , Redes Reguladoras de Genes , Coriomeningite Linfocítica/imunologia , Coriomeningite Linfocítica/metabolismo , Coriomeningite Linfocítica/virologia , Vírus da Coriomeningite Linfocítica/patogenicidade , Camundongos Endogâmicos C57BL , Fenótipo , Receptor de Morte Celular Programada 1/genética , Receptor de Morte Celular Programada 1/metabolismo , Receptores de Antígenos de Linfócitos T/genética , Receptores de Antígenos de Linfócitos T/metabolismo , Transdução de Sinais , Células Th1/imunologia , Células Th1/metabolismo , Células Th1/virologia , Transcriptoma
5.
Front Oncol ; 9: 415, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31165047

RESUMO

Flow cytometry is a widely applied approach for exploratory immune profiling and biomarker discovery in cancer and other diseases. However, flow cytometry is limited by the number of parameters that can be simultaneously analyzed, severely restricting its utility. Recently, the advent of mass cytometry (CyTOF) has enabled high dimensional and unbiased examination of the immune system, allowing simultaneous interrogation of a large number of parameters. This is important for deep interrogation of immune responses and particularly when sample sizes are limited (such as in tumors). Our goal was to compare the accuracy and reproducibility of CyTOF against flow cytometry as a reliable analytic tool for human PBMC and tumor tissues for cancer clinical trials. We developed a 40+ parameter CyTOF panel and demonstrate that compared to flow cytometry, CyTOF yields analogous quantification of cell lineages in conjunction with markers of cell differentiation, function, activation, and exhaustion for use with fresh and viably frozen PBMC or tumor tissues. Further, we provide a protocol that enables reliable quantification by CyTOF down to low numbers of input human cells, an approach that is particularly important when cell numbers are limiting. Thus, we validate CyTOF as an accurate approach to perform high dimensional analysis in human tumor tissue and to utilize low cell numbers for subsequent immunologic studies and cancer clinical trials.

6.
Semin Immunol ; 43: 101277, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31155227

RESUMO

Type I Interferons (IFN-I) mediate numerous immune interactions during viral infections, from the establishment of an antiviral state to invoking and regulating innate and adaptive immune cells that eliminate infection. While continuous IFN-I signaling plays critical roles in limiting virus replication during both acute and chronic infections, sustained IFN-I signaling also leads to chronic immune activation, inflammation and, consequently, immune exhaustion and dysfunction. Thus, an understanding of the balance between the desirable and deleterious effects of chronic IFN-I signaling will inform our quest for IFN-based therapies for chronic viral infections as well as other chronic diseases, including cancer. As such the factors involved in induction, propagation and regulation of IFN-I signaling, from the initial sensing of viral nucleotides within the cell to regulatory downstream signaling factors and resulting IFN-stimulated genes (ISGs) have received significant research attention. This review summarizes recent work on IFN-I signaling in chronic infections, and provides an update on therapeutic approaches being considered to counter such infections.


Assuntos
Fatores Reguladores de Interferon/metabolismo , Interferon Tipo I/metabolismo , Linfócitos T/imunologia , Viroses/imunologia , Animais , Doença Crônica , Regulação da Expressão Gênica , Humanos , Imunidade , Inflamação , Fatores Reguladores de Interferon/genética , Transdução de Sinais , Ativação Transcricional , Viroses/genética , Viroses/terapia
7.
Retrovirology ; 14(1): 18, 2017 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-28288652

RESUMO

BACKGROUND: BST2 inhibits HIV-1 release by tethering nascent virions to the surface of infected cells. HIV-1 Vpu overcomes this restriction by removing BST2 from viral budding sites via BST2 intracellular trapping and sequestration, surface downregulation and/or displacement mechanisms. Vpu is composed of a short luminal tail, a transmembrane domain (TMD) and a cytoplasmic hinge region that is followed by two helices. BST2 counteraction relies on the ability of Vpu to physically bind BST2 through TMD interactions and recruit the clathrin-dependent trafficking machinery via a canonical acidic di-leucine signalling motif within the helix-2 of Vpu. The highly conserved Vpu transmembrane-proximal hinge region encompasses residues that resemble an acidic leucine-based trafficking motif, whose functional roles are currently ill-defined. In this study, we investigated the contribution of these residues towards Vpu-mediated BST2 antagonism. RESULTS: We show that while these conserved residues have no intrinsic activity on the cellular distribution of Vpu in the absence of BST2, they regulate the ability of Vpu to bind to BST2 and, consequently, govern both BST2-dependent trafficking properties of the protein as well as its co-localization with BST2. Moreover, these residues, particularly a glutamic acid residue positioned immediately following the TMD, are a determinant not only for efficient targeting of BST2, but also binding and degradation of CD4, another host membrane protein targeted by Vpu. Mechanistically, our data are consistent with a role of these residues in the maintenance of the Vpu TMD conformational configuration such that interactions with membrane-associated host targets are favoured. CONCLUSIONS: Altogether, this work demonstrates an important regulatory role of the transmembrane-proximal Vpu hinge region residues towards enabling the protein to efficiently engage its target host proteins. Thus, this highly conserved, cytosolic Vpu hinge region may represent an attractive target for the development of anti-Vpu inhibitors.


Assuntos
Antígenos CD/metabolismo , HIV-1/fisiologia , Interações Hospedeiro-Patógeno , Proteínas do Vírus da Imunodeficiência Humana/genética , Proteínas do Vírus da Imunodeficiência Humana/metabolismo , Proteínas Virais Reguladoras e Acessórias/genética , Proteínas Virais Reguladoras e Acessórias/metabolismo , Análise Mutacional de DNA , Proteínas Ligadas por GPI/antagonistas & inibidores , Proteínas Ligadas por GPI/metabolismo , HIV-1/genética , Humanos , Ligação Proteica
8.
Sci Rep ; 6: 37225, 2016 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-27853288

RESUMO

Binding of anti-HIV antibodies (Abs) to envelope (Env) glycoproteins on infected cells can mark them for elimination via antibody-dependent cell-mediated cytotoxicity (ADCC). BST2, a type I interferon (IFN)-stimulated restriction factor that anchors nascent Env-containing virions at the surface of infected cells has been shown to enhance ADCC functions. In a comprehensive analysis of ADCC potency by neutralizing anti-HIV Abs (NAbs), we show in this study that NAbs are capable of mediating ADCC against HIV-infected T cells with 3BNC117, PGT126 and PG9 being most efficient. We demonstrate that HIV-induced BST2 antagonism effectively attenuates Ab binding and ADCC responses mediated by all classes of NAbs that were tested. Interestingly, IFNα treatment can reverse this effect in a BST2-dependent manner. Importantly, while reactivated latent T cell lines display some susceptibility to ADCC mediated by broadly NAbs, inactivating BST2 viral countermeasures and/or exogenous IFNα augment their elimination. Overall, our findings support the notion that NAbs can induce ADCC. They highlight that while BST2 antagonism by HIV promotes ADCC evasion, strategies aimed at restoring BST2 restriction could improve anti-HIV responses and potentially provide a means to eliminate reactivated cells in latent reservoirs.


Assuntos
Anticorpos Neutralizantes/imunologia , Citotoxicidade Celular Dependente de Anticorpos/imunologia , Antígenos CD/imunologia , Anticorpos Anti-HIV/imunologia , Infecções por HIV/imunologia , HIV-1/fisiologia , Linfócitos T/imunologia , Vírion/imunologia , Latência Viral/imunologia , Feminino , Proteínas Ligadas por GPI/imunologia , Células HEK293 , Humanos , Masculino
9.
Retrovirology ; 11: 15, 2014 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-24498878

RESUMO

BACKGROUND: HIV proteins Nef and Vpu down-modulate various host factors to evade immune defenses. Indeed, the CD4 receptor is down-regulated by Nef and Vpu, whereas virion-tethering BST2 is depleted by Vpu. Antibody-dependent cell-mediated cytotoxicity (ADCC) is increasingly recognized as a potentially powerful anti-HIV response. Given that epitopes which are specific for ADCC-competent anti-HIV antibodies are transitionally exposed upon CD4-mediated HIV entry, we investigated whether by depleting CD4 and BST2, HIV could negatively affect ADCC function. RESULTS: Using anti-envelope (Env) Abs A32 and 2G12 to trigger ADCC activity, we find that interactions between CD4 and Env within infected cells expose ADCC-targeted epitopes on cell-surface Env molecules, marking infected T cells for lysis by immune cells. We also provide evidence to show that by cross-linking nascent virions at the plasma membrane, hence increasing cell-surface Env density, BST2 further enhances the efficiency of this antiviral process. The heightened susceptibility of T cells infected with a virus lacking Nef and Vpu to ADCC was recapitulated when plasmas from HIV-infected patients were used as an alternative source of Abs. CONCLUSIONS: Our data unveil a mechanism by which HIV Nef and Vpu function synergistically to protect infected cells from ADCC and promote viral persistence. These findings also renew the potential practical relevance of ADCC function in vivo.


Assuntos
Antígenos CD/metabolismo , Antígenos CD4/metabolismo , Linfócitos T CD4-Positivos/virologia , Anticorpos Anti-HIV/imunologia , Interações Hospedeiro-Patógeno , Evasão da Resposta Imune , Produtos do Gene nef do Vírus da Imunodeficiência Humana/metabolismo , Apoptose , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/fisiologia , Sobrevivência Celular , Regulação para Baixo , Proteínas Ligadas por GPI/metabolismo , Infecções por HIV/imunologia , Infecções por HIV/virologia , Humanos , Modelos Biológicos
10.
Structure ; 21(12): 2186-96, 2013 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-24207126

RESUMO

Cap-dependent translation initiation is regulated by the interaction of eukaryotic initiation factor 4E (eIF4E) with eIF4E binding proteins (4E-BPs). Whereas the binding of 4E-BP peptides containing the eIF4E-binding 54YXXXXLΦ6° motif has been studied, atomic-level characterization of the interaction of eIF4E with full-length 4E-BPs has been lacking. Here, we use isothermal titration calorimetry and nuclear magnetic resonance spectroscopy to characterize the dynamic, structural and binding properties of 4E-BP2. Although disordered, 4E-BP2 contains significant fluctuating secondary structure and binds eIF4E at an extensive bipartite interface including the canonical 54YXXXXLΦ6° and 78IPGVT8² sites. Each of the two binding elements individually has submicromolar affinity and exchange on and off of the eIF4E surface within the context of the overall nanomolar complex. This dynamic interaction facilitates exposure of regulatory phosphorylation sites within the complex. The 4E-BP2 interface on eIF4E overlaps yet is more extensive than the eIF4G:eIF4E interface, suggesting that these key interactions may be differentially targeted for therapeutics.


Assuntos
Fator de Iniciação 4E em Eucariotos/química , Fatores de Iniciação em Eucariotos/química , Regulação Alostérica , Sítios de Ligação , Fator de Iniciação Eucariótico 4G/química , Humanos , Ressonância Magnética Nuclear Biomolecular , Fosforilação , Conformação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...