Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Environ Manage ; 323: 116294, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36261994

RESUMO

Municipal and industrial wastewater discharges in coastal and marine environments are of major concern due to their high carbon and nitrogen loads and the resulted phenomenon of eutrophication. Bioelectrochemical reactors (BERs) for simultaneous nitrogen and carbon removal have gained attention owing to their cost efficiency and versatility, as well as the possibility of electrochemical enrich specific groups. This study presented a scalable two-chamber BERs using graphite granules as electrode material. BERs were inoculated and operated for 37 days using natural seawater with high concentrations of ammonium and acetate. The BERs demonstrated a maximum current density of 0.9 A m-3 and removal rates of 7.5 mg NH4+-N L-1 d-1 and 99.5 mg L-1 d-1 for total organic carbon (TOC). Removals observed for NH4+-N and TOC were 96.2% and 68.7%, respectively. The results of nutrient removal (i.e., ammonium, nitrate, nitrite and TOC) and microbial characterization (i.e., next-generation sequencing of the 16S rRNA gene and fluorescence in situ hybridization) showed that BERs operated with a poised cathode at -260 mV (vs. Ag/AgCl) significantly enriched nitrifying microorganisms in the anode and denitrifying microorganisms and planctomycetes in the cathode. Interestingly, the electrochemical enrichment did not increase the total number of microorganisms in the formed biofilms but controlled their composition. Thus, this work shows the first successful attempt to electrochemically enrich marine nitrifying and denitrifying microorganisms and presents a technique to accelerate the start-up process of BERs to remove dissolved inorganic nitrogen and total organic carbon from seawater.


Assuntos
Compostos de Amônio , Grafite , Nitrogênio/química , Desnitrificação , Nitrificação , Águas Residuárias , Carbono , Nitratos , Reatores Biológicos , RNA Ribossômico 16S , Nitritos , Hibridização in Situ Fluorescente , Água do Mar
2.
Water Res ; 186: 116372, 2020 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-32916620

RESUMO

Ammonia-oxidizing bacteria (AOB) of the betaproteobacterial genera Nitrosomonas and Nitrosospira are key nitrifying microorganisms in many natural and engineered ecosystems. Since many AOB remain uncultured, fluorescence in situ hybridization (FISH) with rRNA-targeted oligonucleotide probes has been one of the most widely used approaches to study the community composition, abundance, and other features of AOB directly in environmental samples. However, the established and widely used AOB-specific 16S rRNA-targeted FISH probes were designed up to two decades ago, based on much smaller rRNA gene sequence datasets than available today. Several of these probes cover their target AOB lineages incompletely and suffer from a weak target specificity, which causes cross-hybridization of probes that should detect different AOB lineages. Here, a set of new highly specific 16S rRNA-targeted oligonucleotide probes was developed and experimentally evaluated that complements the existing probes and enables the specific detection and differentiation of the known, major phylogenetic clusters of betaproteobacterial AOB. The new probes were successfully applied to visualize and quantify AOB in activated sludge and biofilm samples from seven pilot- and full-scale wastewater treatment systems. Based on its improved target group coverage and specificity, the refined probe set will facilitate future in situ analyses of AOB.


Assuntos
Amônia , Ecossistema , Hibridização in Situ Fluorescente , Sondas de Oligonucleotídeos/genética , Oxirredução , Filogenia , RNA Ribossômico 16S/genética
3.
Front Microbiol ; 10: 1383, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31275291

RESUMO

Fluorescence in situ hybridization (FISH) with rRNA-targeted oligonucleotide probes is a key method for the detection of (uncultured) microorganisms in environmental and medical samples. A major limitation of standard FISH protocols, however, is the small number of phylogenetically distinct target organisms that can be detected simultaneously. In this study, we introduce a multicolor FISH approach that uses eight fluorophores with distinct spectral properties, which can unambiguously be distinguished by confocal laser scanning microscopy combined with white light laser technology. Hybridization of rRNA-targeted DNA oligonucleotide probes, which were mono-labeled with these fluorophores, to Escherichia coli cultures confirmed that the fluorophores did not affect probe melting behavior. Application of the new multicolor FISH method enabled the differentiation of seven (potentially up to eight) phylogenetically distinct microbial populations in an artificial community of mixed pure cultures (five bacteria, one archaeon, and one yeast strain) and in activated sludge from a full-scale wastewater treatment plant. In contrast to previously published multicolor FISH approaches, this method does not rely on combinatorial labeling of the same microorganisms with different fluorophores, which is prone to biases. Furthermore, images acquired by this method do not require elaborate post-processing prior to analysis. We also demonstrate that the newly developed multicolor FISH method is compatible with an improved cell fixation protocol for FISH targeting Gram-negative bacterial populations. This fixation approach uses agarose embedding during formaldehyde fixation to better preserve the three-dimensional structure of spatially complex samples such as biofilms and activated sludge flocs. The new multicolor FISH approach should be highly suitable for studying structural and functional aspects of microbial communities in virtually all types of samples that can be analyzed by conventional FISH methods.

4.
mBio ; 9(4)2018 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-29991589

RESUMO

Nitrification is a key process of the biogeochemical nitrogen cycle and of biological wastewater treatment. The second step, nitrite oxidation to nitrate, is catalyzed by phylogenetically diverse, chemolithoautotrophic nitrite-oxidizing bacteria (NOB). Uncultured NOB from the genus "Candidatus Nitrotoga" are widespread in natural and engineered ecosystems. Knowledge about their biology is sparse, because no genomic information and no pure "Ca Nitrotoga" culture was available. Here we obtained the first "Ca Nitrotoga" isolate from activated sludge. This organism, "Candidatus Nitrotoga fabula," prefers higher temperatures (>20°C; optimum, 24 to 28°C) than previous "Ca Nitrotoga" enrichments, which were described as cold-adapted NOB. "Ca Nitrotoga fabula" also showed an unusually high tolerance to nitrite (activity at 30 mM NO2-) and nitrate (up to 25 mM NO3-). Nitrite oxidation followed Michaelis-Menten kinetics, with an apparent Km (Km(app)) of ~89 µM nitrite and a Vmax of ~28 µmol of nitrite per mg of protein per h. Key metabolic pathways of "Ca Nitrotoga fabula" were reconstructed from the closed genome. "Ca Nitrotoga fabula" possesses a new type of periplasmic nitrite oxidoreductase belonging to a lineage of mostly uncharacterized proteins. This novel enzyme indicates (i) separate evolution of nitrite oxidation in "Ca Nitrotoga" and other NOB, (ii) the possible existence of phylogenetically diverse, unrecognized NOB, and (iii) together with new metagenomic data, the potential existence of nitrite-oxidizing archaea. For carbon fixation, "Ca Nitrotoga fabula" uses the Calvin-Benson-Bassham cycle. It also carries genes encoding complete pathways for hydrogen and sulfite oxidation, suggesting that alternative energy metabolisms enable "Ca Nitrotoga fabula" to survive nitrite depletion and colonize new niches.IMPORTANCE Nitrite-oxidizing bacteria (NOB) are major players in the biogeochemical nitrogen cycle and critical for wastewater treatment. However, most NOB remain uncultured, and their biology is poorly understood. Here, we obtained the first isolate from the environmentally widespread NOB genus "Candidatus Nitrotoga" and performed a detailed physiological and genomic characterization of this organism ("Candidatus Nitrotoga fabula"). Differences between key phenotypic properties of "Ca Nitrotoga fabula" and those of previously enriched "Ca Nitrotoga" members reveal an unexpectedly broad range of physiological adaptations in this genus. Moreover, genes encoding components of energy metabolisms outside nitrification suggest that "Ca Nitrotoga" are ecologically more flexible than previously anticipated. The identification of a novel nitrite-oxidizing enzyme in "Ca Nitrotoga fabula" expands our picture of the evolutionary history of nitrification and might lead to discoveries of novel nitrite oxidizers. Altogether, this study provides urgently needed insights into the biology of understudied but environmentally and biotechnologically important microorganisms.


Assuntos
Gallionellaceae/metabolismo , Genoma Bacteriano , Nitratos/metabolismo , Nitritos/metabolismo , Esgotos/microbiologia , Evolução Molecular , Gallionellaceae/crescimento & desenvolvimento , Gallionellaceae/isolamento & purificação , Cinética , Redes e Vias Metabólicas/genética , Oxirredução , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...