Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Electromyogr Kinesiol ; 62: 102319, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31171405

RESUMO

Surface electromyography (sEMG) is commonly used to estimate muscle demands in occupational tasks. To allow for comparisons, sEMG amplitude is normalized to muscle specific maximum voluntary contractions (MVCs) performed in a standardized set of postures. However, maximal sEMG amplitude in shoulder muscles is highly dependent on arm posture and therefore, normalizing task related muscular activity to standard MVCs may lead to misinterpretation of task specific muscular demands. Therefore, the purpose of this study was to investigate differences in commonly monitored shoulder muscles using normalized sEMG amplitude between maximal exertions at different hand locations and across force exertion directions relative to standard MVCs. sEMG was recorded from the middle deltoid, pectoralis major sternal head, infraspinatus, latissimus dorsi, and upper trapezius. Participants completed standardized muscle-specific MVCs and two maximal exertions in 5 hand locations (low left, low right, high left, high right, and central) in each of the four force directions (push, pull, up, and down). Peak sEMG was analyzed in the direction(s) that elicited the highest signal for each muscle. All muscles differed by location (p < 0.05). Latissimus dorsi had the greatest activation during pulls (32-135% MVC); upper trapezius and middle deltoid while exerting upwards (73-103% and 42-78% MVC, respectively); infraspinatus while pushing (38-79% MVC); and pectoralis major activation was the highest during downwards exertions (48-84% MVC). Normalization of location specific maximal exertions to standard muscle specific MVCs underestimated maximal activity across 90% of the tasks in all shoulder muscles tested, except for latissimus dorsi where amplitudes were overestimated in low right hand location. Normalization of location specific muscle activity to standard muscle specific MVCs often underestimates muscle activity in task performance and is cautioned against if the goal is to accurately estimate muscle demands.


Assuntos
Ombro , Músculos Superficiais do Dorso , Eletromiografia , Feminino , Humanos , Contração Isométrica , Contração Muscular , Músculo Esquelético , Postura
2.
Am J Phys Med Rehabil ; 98(5): 407-415, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30550457

RESUMO

OBJECTIVE: The purpose of this study was to quantify the activation of partitions within supraspinatus and infraspinatus and some periscapular muscles during four resistance exercises with elastic bands. DESIGN: Twenty-seven right-handed healthy volunteers (age, 22.5 ± 2.7 yrs) were recruited. Intramuscular electromyography from supraspinatus (anterior and posterior) and infraspinatus (superior and middle) and surface electromyography data from the upper, middle, and lower trapezius and serratus anterior were recorded during four elastic resistance exercises (Y, T, W, L). Kinematics were recorded synchronously. Electromyography values were presented as percentage of maximal voluntary isometric contraction and compared across exercises using analysis of variance. Muscle activation ratios were also calculated. RESULTS: The mean activations of all rotator cuff partitions were more than 40% maximal voluntary isometric contraction, except middle infraspinatus during the T exercise (29.3% maximal voluntary isometric contraction). Serratus anterior activity was significantly higher during the Y exercise (P < 0.008). Lower trapezius was activated more than 80% maximal voluntary isometric contraction in all four exercises with higher contributions compared with the upper trapezius. CONCLUSIONS: The investigated exercises induced moderate to high activation in supraspinatus and infraspinatus partitions and very high activation in lower trapezius. YTWL exercises are appropriate for strengthening of some rotator cuff and periscapular muscles and for late stages of shoulder rehabilitation.


Assuntos
Contração Isométrica/fisiologia , Treinamento Resistido/métodos , Ombro/fisiologia , Músculos Superficiais do Dorso/fisiologia , Adulto , Eletromiografia/métodos , Feminino , Humanos , Masculino , Músculo Esquelético/fisiologia , Amplitude de Movimento Articular/fisiologia , Adulto Jovem
3.
Exp Brain Res ; 236(8): 2347-2362, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29947955

RESUMO

Healthy aging affects manual asymmetries in simple motor tasks, such as unilateral reaching and aiming. The effects of aging on manual asymmetries in the performance of a complex, naturalistic task are unknown, but are relevant for investigating the praxis system. This study examined how aging influences manual asymmetry in different contexts in a tool manipulation task. Fifty healthy, right-hand-dominant young (N = 29; 21.41 ± 2.87 years), and elderly (N = 21; mean: 74.14 ± 6.64 years) participants performed a 'slicing' gesture in response to a verbal command in two contexts: with (tool) and without the tool (pantomime). For interjoint relationships between shoulder plane of elevation and elbow flexion, a HAND × AGE × CONTEXT interaction existed (F1,43 = 4.746, p = 0.035). In pantomime, interjoint control deviated more in the left (non-dominant) than the right (dominant) limb in the elderly adult group (Wilcoxon, p = 0.010). No such differences existed in the young adult group (Wilcoxon, p = 0.471). Furthermore, contextual information reduced interjoint deviation in young adults when the task was performed with the right (dominant) hand (Wilcoxon, p = 0.001) and in the elderly adults when the task was performed with the left (non-dominant) hand (Wilcoxon, p = 0.012). The presence of the tool did not reduce interjoint deviation for the right hand in the elderly group (Wilcoxon, p = 0.064) or the left hand in the young group (Wilcoxon, p = 0.044). Deviation within trials (i.e., intrasubject deviation) in elbow flexion was higher in the elderly relative to the young adult group (p = 0.003). Finally, resultant peak velocities were smaller (p = 0.002) and cycle duration longer (p < 0.0001) in the elderly adult group. This study provides novel evidence that aging affects manual asymmetries and sensorimotor control in a naturalistic task and warrants that aging research considers the context in which the task is performed.


Assuntos
Envelhecimento/fisiologia , Fenômenos Biomecânicos/fisiologia , Lateralidade Funcional/fisiologia , Mãos/fisiologia , Atividade Motora/fisiologia , Adulto , Idoso , Cotovelo/fisiologia , Feminino , Humanos , Masculino , Adulto Jovem
4.
Front Neurol ; 8: 380, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28824536

RESUMO

Intermittent theta burst stimulation (iTBS) is intended primarily to alter corticospinal excitability, creating an attractive opportunity to alter neural output following incomplete spinal cord injury (SCI). This study is the first to assess the effects of iTBS in SCI. Eight individuals with chronic incomplete SCI were studied. Sham or real iTBS was delivered (to each participant) over primary motor and somatosensory cortices in separate sessions. Motor-evoked potential (MEP) recruitment curves were obtained from the flexor carpi radialis muscle before and after iTBS. Results indicate similar responses for iTBS to both motor and somatosensory cortex and reduced MEPs in 56.25% and increased MEPs in 25% of instances. Sham stimulation exceeded real iTBS effects in the remaining 18.25%. It is our opinion that observing short-term neuroplasticity in corticospinal output in chronic SCI is an important advance and should be tested in future studies as an opportunity to improve function in this population. We emphasize the need to re-consider the importance of the direction of MEP change following a single session of iTBS since the relationship between MEP direction and motor function is unknown and multiple sessions of iTBS may yield very different directional results. Furthermore, we highlight the importance of including sham control in the experimental design. The fundamental point from this pilot research is that a single session of iTBS is often capable of creating short-term change in SCI. Future sham-controlled randomized trials may consider repeat iTBS sessions to promote long-term changes in corticospinal excitability.

5.
PLoS One ; 12(3): e0173672, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28278300

RESUMO

Emerging evidence suggests that regular physical activity can impact cortical function and facilitate plasticity. In the present study, we examined how physical activity levels influence corticospinal excitability and intracortical circuitry in motor cortex following a single session of moderate intensity aerobic exercise. We aimed to determine whether exercise-induced short-term plasticity differed between high versus low physically active individuals. Participants included twenty-eight young, healthy adults divided into two equal groups based on physical activity level determined by the International Physical Activity Questionnaire: low-to-moderate (LOW) and high (HIGH) physical activity. Transcranial magnetic stimulation was used to assess motor cortex excitability via motor evoked potential (MEP) recruitment curves for the first dorsal interosseous (FDI) muscle at rest (MEPREST) and during tonic contraction (MEPACTIVE), short-interval intracortical inhibition (SICI) and facilitation (SICF), and intracortical facilitation (ICF). All dependent measures were obtained in the resting FDI muscle, with the exception of AMT and MEPACTIVE recruitment curves that were obtained during tonic FDI contraction. Dependent measures were acquired before and following moderate intensity aerobic exercise (20 mins, ~60% of the age-predicted maximal heart rate) performed on a recumbent cycle ergometer. Results indicate that MEPREST recruitment curve amplitudes and area under the recruitment curve (AURC) were increased following exercise in the HIGH group only (p = 0.002 and p = 0.044, respectively). SICI and ICF were reduced following exercise irrespective of physical activity level (p = 0.007 and p = 0.04, respectively). MEPACTIVE recruitment curves and SICF were unaltered by exercise. These findings indicate that the propensity for exercise-induced plasticity is different in high versus low physically active individuals. Additionally, these data highlight that a single session of aerobic exercise can transiently reduce inhibition in the motor cortex regardless of physical activity level, potentially priming the system for plasticity induction.


Assuntos
Encéfalo/fisiologia , Potencial Evocado Motor/fisiologia , Exercício Físico/fisiologia , Córtex Motor/fisiologia , Estimulação Elétrica , Eletromiografia , Feminino , Humanos , Masculino , Estimulação Magnética Transcraniana , Adulto Jovem
6.
Front Neurosci ; 10: 251, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27375414

RESUMO

Motor learning is a process whereby the acquisition of new skills occurs with practice, and can be influenced by the provision of feedback. An important question is what frequency of feedback facilitates motor learning. The guidance hypothesis assumes that the provision of less augmented feedback is better than more because a learner can use his/her own inherent feedback. However, it is unclear whether this hypothesis holds true for all types of augmented feedback, including for example sonified information about performance. Thus, we aimed to test what frequency of augmented sonified feedback facilitates the motor learning of a novel joint coordination pattern. Twenty healthy volunteers first reached to a target with their arm (baseline phase). We manipulated this baseline kinematic data for each individual to create a novel target joint coordination pattern. Participants then practiced to learn the novel target joint coordination pattern, receiving either feedback on every trial i.e., 100% feedback (n = 10), or every other trial, i.e., 50% feedback (n = 10; acquisition phase). We created a sonification system to provide the feedback. This feedback was a pure tone that varied in intensity in proportion to the error of the performed joint coordination relative to the target pattern. Thus, the auditory feedback contained information about performance in real-time (i.e., "concurrent, knowledge of performance feedback"). Participants performed the novel joint coordination pattern with no-feedback immediately after the acquisition phase (immediate retention phase), and on the next day (delayed retention phase). The root-mean squared error (RMSE) and variable error (VE) of joint coordination were significantly reduced during the acquisition phase in both 100 and 50% feedback groups. There was no significant difference in VE between the groups at immediate and delayed retention phases. However, at both these retention phases, the 100% feedback group showed significantly smaller RMSE than the 50% group. Thus, contrary to the guidance hypothesis, our findings suggest that the provision of more, concurrent knowledge of performance auditory feedback during the acquisition of a novel joint coordination pattern, may result in better skill retention.

7.
J Neurophysiol ; 115(5): 2681-91, 2016 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-26984422

RESUMO

Theta-burst stimulation (TBS) over human primary motor cortex evokes plasticity and metaplasticity, the latter contributing to the homeostatic balance of excitation and inhibition. Our knowledge of TBS-induced effects on primary somatosensory cortex (SI) is limited, and it is unknown whether TBS induces metaplasticity within human SI. Sixteen right-handed participants (6 females, mean age 23 yr) received two TBS protocols [continuous TBS (cTBS) and intermittent TBS (iTBS)] delivered in six different combinations over SI in separate sessions. TBS protocols were delivered at 30 Hz and were as follows: a single cTBS protocol, a single iTBS protocol, cTBS followed by cTBS, iTBS followed by iTBS, cTBS followed by iTBS, and iTBS followed by cTBS. Measures included the amplitudes of the first and second somatosensory evoked potentials (SEPs) via median nerve stimulation, their paired-pulse ratio (PPR), and temporal order judgment (TOJ). Dependent measures were obtained before TBS and at 5, 25, 50, and 90 min following stimulation. Results indicate similar effects following cTBS and iTBS; increased amplitudes of the second SEP and PPR without amplitude changes to SEP 1, and impairments in TOJ. Metaplasticity was observed such that TOJ impairments following a single cTBS protocol were abolished following consecutive cTBS protocols. Additionally, consecutive iTBS protocols altered the time course of effects when compared with a single iTBS protocol. In conclusion, 30-Hz cTBS and iTBS protocols delivered in isolation induce effects consistent with a TBS-induced reduction in intracortical inhibition within SI. Furthermore, cTBS- and iTBS-induced metaplasticity appear to follow homeostatic and nonhomeostatic rules, respectively.


Assuntos
Plasticidade Neuronal , Córtex Somatossensorial/fisiologia , Percepção do Tato , Adolescente , Adulto , Potenciais Somatossensoriais Evocados , Feminino , Humanos , Masculino , Nervo Mediano/fisiologia , Ritmo Teta
8.
Physiol Meas ; 36(5): 1025-35, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25902961

RESUMO

Although motion analysis is frequently employed in upper limb motor assessment (e.g. visually-guided reaching), they are resource-intensive and limited to laboratory settings. This study evaluated the reliability and accuracy of a new markerless motion capture device, the Leap Motion controller, to measure finger position. Testing conditions that influence reliability and agreement between the Leap and a research-grade motion capture system were examined. Nine healthy young adults pointed to 15 targets on a computer screen under two conditions: (1) touching the target (touch) and (2) 4 cm away from the target (no-touch). Leap data was compared to an Optotrak marker attached to the index finger. Across all trials, root mean square (RMS) error of the Leap system was 17.30  ±  9.56 mm (mean ± SD), sampled at 65.47  ±  21.53 Hz. The % viable trials and mean sampling rate were significantly lower in the touch condition (44% versus 64%, p < 0.001; 52.02  ±  2.93 versus 73.98  ±  4.48 Hz, p = 0.003). While linear correlations were high (horizontal: r(2) = 0.995, vertical r(2) = 0.945), the limits of agreement were large (horizontal: -22.02 to +26.80 mm, vertical: -29.41 to +30.14 mm). While not as precise as more sophisticated optical motion capture systems, the Leap Motion controller is sufficiently reliable for measuring motor performance in pointing tasks that do not require high positional accuracy (e.g. reaction time, Fitt's, trails, bimanual coordination).


Assuntos
Dedos/fisiologia , Voluntários Saudáveis , Movimento , Dispositivos Ópticos , Adolescente , Adulto , Feminino , Humanos , Masculino , Estimulação Luminosa , Reprodutibilidade dos Testes , Tato , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...