Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 3062, 2023 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-37244935

RESUMO

Self-renewal is a crucial property of glioblastoma cells that is enabled by the choreographed functions of chromatin regulators and transcription factors. Identifying targetable epigenetic mechanisms of self-renewal could therefore represent an important step toward developing effective treatments for this universally lethal cancer. Here we uncover an epigenetic axis of self-renewal mediated by the histone variant macroH2A2. With omics and functional assays deploying patient-derived in vitro and in vivo models, we show that macroH2A2 shapes chromatin accessibility at enhancer elements to antagonize transcriptional programs of self-renewal. macroH2A2 also sensitizes cells to small molecule-mediated cell death via activation of a viral mimicry response. Consistent with these results, our analyses of clinical cohorts indicate that high transcriptional levels of this histone variant are associated with better prognosis of high-grade glioma patients. Our results reveal a targetable epigenetic mechanism of self-renewal controlled by macroH2A2 and suggest additional treatment approaches for glioblastoma patients.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Humanos , Histonas/genética , Histonas/metabolismo , Glioblastoma/metabolismo , Regulação Neoplásica da Expressão Gênica , Cromatina/metabolismo , Epigênese Genética , Linhagem Celular Tumoral , Células-Tronco Neoplásicas/metabolismo , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo
2.
Neurosurg Focus ; 50(2): E9, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33524950

RESUMO

OBJECTIVE: The aim of this study was to demonstrate the in vivo safety and antitumor effect of a novel recombinant vesicular stomatitis virus (VSV): G protein less (GLESS)-fusion-associated small transmembrane (FAST)-VSV. METHODS: Viral infection efficiency and cell proliferation were detected using an inverted fluorescence microscope and alarmaBlue assay, respectively. To evaluate the safety of the virus, different doses of GLESS-FAST-VSV and a positive control virus (VSV∆M51) were injected into normal F344 rats and C57BL/6 mice, and each animal's weight, survival time, and pathological changes were examined on the following day. To evaluate the efficacy of the virus, RG2 and GL261 cells were used to construct rat and mouse glioma models, respectively, via a stereotactic method. After multiple intratumoral injections of the virus, tumor growth (size) and the survival time of the animals were observed. RESULTS: In vitro experiments showed that GLESS-FAST-VSV could infect and kill brain tumor cells and had less toxic effects on normal cells. After direct injection of GLESS-FAST-VSV into the animal brains, all animals tolerated the virus well, and no animal death, encephalitis, or ventriculitis was observed. In contrast, all animals that received brain injections of VSV∆M51 in the brain died. Moreover, multiple injections of GLESS-FAST-VSV in brain tumors significantly prolonged the survival of normal-immunity animals harboring brain tumors. CONCLUSIONS: GLESS-FAST-VSV exhibited little neurotoxicity and could be injected directly into the tumor to effectively inhibit tumor growth and prolong the survival of normal-immunity animals, laying a theoretical foundation for the early application of such viruses in clinical trials.


Assuntos
Glioma , Estomatite Vesicular , Animais , Glioma/tratamento farmacológico , Camundongos , Camundongos Endogâmicos C57BL , Ratos , Ratos Endogâmicos F344 , Vírus da Estomatite Vesicular Indiana
3.
Cancer Gene Ther ; 28(7-8): 739-744, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-32678303

RESUMO

Central nervous system (CNS) atypical teratoid/rhabdoid tumor (AT/RT) is a rare, aggressive tumor that most often affects very young children. The common decisive molecular defect in AT/RT has been shown to be a single genetic alteration, i.e., the loss of hSNF5 gene that encodes for a subunit of the SWI/SNF complex that modulates chromatin remodeling activities. As a result, AT/RT cells display unregulated cell proliferation due to the dysfunction of an important epigenetic control. We have previously demonstrated the preclinical efficacy of the oncolytic double-deleted vaccinia virus (VVDD) against AT/RT. Here we report the establishment of a modified VVDD engineered to express wild type hSNF5 gene. We show that this reconstructed vaccinia virus retains comparable infectivity and in vitro cytotoxicity of the parent strain. However, in addition, hSNF5-arming of VVDD results in a decreased cell cycle S phase population and down-regulation of cyclin D1. These findings suggest that hSNF5-arming of VVDD may increase the efficacy in the treatment of AT/RT and validates, as a proof-of-concept, an experimental approach to enhance the effective use of novel modified oncolytic viruses in the treatment of tumors with loss of a tumor suppressor gene function.


Assuntos
Sistema Nervoso Central/patologia , Vírus Oncolíticos/metabolismo , Tumor Rabdoide/genética , Tumor Rabdoide/virologia , Proteína SMARCB1/metabolismo , Vaccinia virus/metabolismo , Animais , Modelos Animais de Doenças , Feminino , Humanos , Camundongos , Ensaios Antitumorais Modelo de Xenoenxerto
4.
Nat Commun ; 11(1): 4997, 2020 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-33020472

RESUMO

Despite a deeper molecular understanding, human glioblastoma remains one of the most treatment refractory and fatal cancers. It is known that the presence of macrophages and microglia impact glioblastoma tumorigenesis and prevent durable response. Herein we identify the dual function cytokine IL-33 as an orchestrator of the glioblastoma microenvironment that contributes to tumorigenesis. We find that IL-33 expression in a large subset of human glioma specimens and murine models correlates with increased tumor-associated macrophages/monocytes/microglia. In addition, nuclear and secreted functions of IL-33 regulate chemokines that collectively recruit and activate circulating and resident innate immune cells creating a pro-tumorigenic environment. Conversely, loss of nuclear IL-33 cripples recruitment, dramatically suppresses glioma growth, and increases survival. Our data supports the paradigm that recruitment and activation of immune cells, when instructed appropriately, offer a therapeutic strategy that switches the focus from the cancer cell alone to one that includes the normal host environment.


Assuntos
Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Glioma/metabolismo , Glioma/patologia , Interleucina-33/metabolismo , Animais , Neoplasias Encefálicas/mortalidade , Carcinogênese , Núcleo Celular/metabolismo , Citocinas/metabolismo , Glioblastoma/metabolismo , Glioblastoma/mortalidade , Glioblastoma/patologia , Glioma/mortalidade , Humanos , Inflamação , Células Matadoras Naturais/metabolismo , Células Matadoras Naturais/patologia , Macrófagos/metabolismo , Macrófagos/patologia , Camundongos , Camundongos SCID , Microglia , Análise de Sobrevida , Linfócitos T/metabolismo , Linfócitos T/patologia , Microambiente Tumoral/imunologia
5.
Biomaterials ; 252: 120105, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32417652

RESUMO

Despite extensive molecular characterization, human glioblastoma remains a fatal disease with survival rates measured in months. Little improvement is seen with standard surgery, radiotherapy and chemotherapy. Clinical progress is hampered by the inability to detect and target glioblastoma disease reservoirs based on a diffuse invasive pattern and the presence of molecular and phenotypic heterogeneity. The goal of this study was to target the invasive and stem-like glioblastoma cells that evade first-line treatments using agents capable of delivering imaging enhancers or biotherapeutic cargo. To accomplish this, a combinatorial phage display library was biopanned against glioblastoma cell model systems that accurately recapitulate the intra- and inter-tumor heterogeneity and infiltrative nature of the disease. Candidate peptides were screened for specificity and ability to target glioblastoma cells in vivo. Cargo-conjugated peptides delivered contrast-enhancing agents to highly infiltrative tumor populations in intracranial xenograft models without the obvious need for blood brain barrier disruption. Simultaneous use of five independent targeting peptides provided greater coverage of this complex tumor and selected peptides have the capacity to deliver a therapeutic cargo (oncolytic virus VSVΔM51) to the tumor cells in vivo. Herein, we have identified a series of peptides with utility as an innovative platform to assist in targeting glioblastoma for the purpose of diagnostic or prognostic imaging, image-guided surgery, and/or improved delivery of therapeutic agents to glioblastoma cells implicated in disease relapse.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Vírus Oncolíticos , Animais , Linhagem Celular Tumoral , Glioblastoma/tratamento farmacológico , Humanos , Peptídeos
6.
Proc Natl Acad Sci U S A ; 116(38): 19098-19108, 2019 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-31471491

RESUMO

Glioblastoma multiforme (GBM) is the most deadly brain tumor, and currently lacks effective treatment options. Brain tumor-initiating cells (BTICs) and orthotopic xenografts are widely used in investigating GBM biology and new therapies for this aggressive disease. However, the genomic characteristics and molecular resemblance of these models to GBM tumors remain undetermined. We used massively parallel sequencing technology to decode the genomes and transcriptomes of BTICs and xenografts and their matched tumors in order to delineate the potential impacts of the distinct growth environments. Using data generated from whole-genome sequencing of 201 samples and RNA sequencing of 118 samples, we show that BTICs and xenografts resemble their parental tumor at the genomic level but differ at the mRNA expression and epigenomic levels, likely due to the different growth environment for each sample type. These findings suggest that a comprehensive genomic understanding of in vitro and in vivo GBM model systems is crucial for interpreting data from drug screens, and can help control for biases introduced by cell-culture conditions and the microenvironment in mouse models. We also found that lack of MGMT expression in pretreated GBM is linked to hypermutation, which in turn contributes to increased genomic heterogeneity and requires new strategies for GBM treatment.


Assuntos
Biomarcadores Tumorais/genética , Neoplasias Encefálicas/patologia , Regulação Neoplásica da Expressão Gênica , Genômica/métodos , Glioblastoma/patologia , Células-Tronco Neoplásicas/patologia , Microambiente Tumoral/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Apoptose , Neoplasias Encefálicas/genética , Estudos de Casos e Controles , Proliferação de Células , Metilação de DNA , Resistencia a Medicamentos Antineoplásicos , Feminino , Perfilação da Expressão Gênica , Glioblastoma/genética , Humanos , Masculino , Camundongos , Camundongos SCID , Pessoa de Meia-Idade , Células-Tronco Neoplásicas/metabolismo , Transcriptoma , Células Tumorais Cultivadas , Sequenciamento Completo do Genoma , Ensaios Antitumorais Modelo de Xenoenxerto
7.
PLoS One ; 13(8): e0202860, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30153289

RESUMO

BACKGROUND: Temozolomide (TMZ) is active against glioblastomas (GBM) in which the O6-methylguanine-DNA methyltransferase (MGMT) gene is silenced. However, even in responsive cases, its beneficial effect is undermined by the emergence of drug resistance. Here, we tested whether inhibition of poly (ADP-ribose) polymerase-1 and -2 (PARP) enhanced the effectiveness of TMZ. METHODS: Using patient derived brain tumor initiating cells (BTICs) and orthotopic xenografts as models of newly diagnosed and recurrent high-grade glioma, we assessed the effects of TMZ, ABT-888, and the combination of TMZ and ABT-888 on the viability of BTICs and survival of tumor-bearing mice. We also studied DNA damage repair, checkpoint protein phosphorylation, and DNA replication in mismatch repair (MMR) deficient cells treated with TMZ and TMZ plus ABT-888. RESULTS: Cells and xenografts derived from newly diagnosed MGMT methylated high-grade gliomas were sensitive to TMZ while those derived from unmethylated and recurrent gliomas were typically resistant. ABT-888 had no effect on the viability of BTICs or tumor bearing mice, but co-treatment with TMZ restored sensitivity in resistant cells and xenografts from newly diagnosed unmethylated gliomas and recurrent gliomas with MSH6 mutations. In contrast, the addition of ABT-888 to TMZ had little sensitizing effect on cells and xenografts derived from newly diagnosed methylated gliomas. In a model of acquired TMZ resistance mediated by loss of MMR gene MSH6, re-sensitization to TMZ by ABT-888 was accompanied by persistent DNA strand breaks, re-engagement of checkpoint kinase signaling, and interruption of DNA synthesis. CONCLUSION: In laboratory models, the addition of ABT-888 to TMZ overcame resistance to TMZ.


Assuntos
Benzimidazóis/farmacologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Glioma/patologia , Temozolomida/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto , Animais , Linhagem Celular Tumoral , Proteínas de Ligação a DNA/deficiência , Proteínas de Ligação a DNA/genética , Feminino , Técnicas de Silenciamento de Genes , Humanos , Camundongos , Gradação de Tumores , RNA Interferente Pequeno/genética
9.
Biomed Pharmacother ; 95: 1201-1208, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28931212

RESUMO

BACKGROUND: Malignant glioma still has a poor prognosis and remains incurable. Although temozolomide (TMZ) has demonstrated antitumor activity, its use recently has been halted because of some patients' resistance to this drug. New treatments are desperately needed. An oncolytic virus (virotherapy) is being developed as a novel cancer therapy. We have previously reported that recombinant Vesicular Stomatitis Virus (VSV-ΔM51) and double deleted Vaccinia Virus (vvDD) infected and killed glioma cell lines in vitro and prolonged survival in animal glioma models. As a proposed ex vivo test, the oncolytic potential of VSV-ΔM51 and vvDD in the established human brain tumor stem cells (BTSCs) and the differentiated cells from fresh brain tumor tissues in vitro were further investigated. METHODS: BTSCs from fresh surgical glioblastoma multiforme (GBM) specimens were isolated and cultured, and the characterization of BTSCs were tested. The sensitivity of BTSCs to TMZ and the susceptibility of TMZ resistant BTSCs and their differentiated cells to both oncolytic viruses were examined. RESULTS: The BTSC spheres cultured had all the characteristics of stem cells. The GFP-labeled VSV-ΔM51 and vvDD could infect TMZ resistant BTSCs and cause cytopathic effects. The VSV-ΔM51and vvDD inhibited the self-renewal activity of TMZ resistant BTSCs. And the VSV-ΔM51and vvDD also infected and caused cytopathic effects in differentiated BTSCs. CONCLUSION: VSV-ΔM51and vvDD could infect and kill both the TMZ resistant BTSCs and the differentiated compartments of GBMs in vitro, suggesting that they may be an effective treatment supplement for GBM therapy, particularly for TMZ resistant GBM patients.


Assuntos
Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/patologia , Dacarbazina/análogos & derivados , Resistencia a Medicamentos Antineoplásicos , Células-Tronco Neoplásicas/patologia , Recombinação Genética/genética , Vaccinia virus/genética , Estomatite Vesicular/genética , Morte Celular/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Autorrenovação Celular/efeitos dos fármacos , Dacarbazina/farmacologia , Dacarbazina/uso terapêutico , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Humanos , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/metabolismo , Temozolomida , Replicação Viral
10.
Nat Commun ; 82017 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-28198370

RESUMO

Small-molecule inhibitor of apoptosis (IAP) antagonists, called Smac mimetic compounds (SMCs), sensitize tumours to TNF-α-induced killing while simultaneously blocking TNF-α growth-promoting activities. SMCs also regulate several immunomodulatory properties within immune cells. We report that SMCs synergize with innate immune stimulants and immune checkpoint inhibitor biologics to produce durable cures in mouse models of glioblastoma in which single agent therapy is ineffective. The complementation of activities between these classes of therapeutics is dependent on cytotoxic T-cell activity and is associated with a reduction in immunosuppressive T-cells. Notably, the synergistic effect is dependent on type I IFN and TNF-α signalling. Furthermore, our results implicate an important role for TNF-α-producing cytotoxic T-cells in mediating the anti-cancer effects of immune checkpoint inhibitors when combined with SMCs. Overall, this combinatorial approach could be highly effective in clinical application as it allows for cooperative and complimentary mechanisms in the immune cell-mediated death of cancer cells.


Assuntos
Antineoplásicos/farmacologia , Neoplasias Encefálicas/tratamento farmacológico , Glioblastoma/tratamento farmacológico , Interferon-alfa/imunologia , Interferon beta/imunologia , Tiazóis/farmacologia , Imunidade Adaptativa/efeitos dos fármacos , Animais , Antineoplásicos/síntese química , Antígeno B7-H1/genética , Antígeno B7-H1/imunologia , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/imunologia , Neoplasias Encefálicas/mortalidade , Linhagem Celular Tumoral , Feminino , Regulação da Expressão Gênica , Vetores Genéticos/química , Vetores Genéticos/imunologia , Glioblastoma/genética , Glioblastoma/imunologia , Glioblastoma/mortalidade , Humanos , Imunidade Inata/efeitos dos fármacos , Memória Imunológica , Proteínas Inibidoras de Apoptose/genética , Proteínas Inibidoras de Apoptose/imunologia , Interferon-alfa/genética , Interferon-alfa/farmacologia , Interferon beta/genética , Interferon beta/farmacologia , Camundongos , Poli I-C/farmacologia , Transdução de Sinais , Análise de Sobrevida , Linfócitos T Citotóxicos/efeitos dos fármacos , Linfócitos T Citotóxicos/imunologia , Tiazóis/síntese química , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/imunologia , Fator de Necrose Tumoral alfa/farmacologia , Vesiculovirus/genética , Vesiculovirus/imunologia , Ensaios Antitumorais Modelo de Xenoenxerto
11.
Oncotarget ; 7(37): 59360-59376, 2016 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-27449082

RESUMO

Glioblastoma (GBM) is the most lethal and aggressive adult brain tumor, requiring the development of efficacious therapeutics. Towards this goal, we screened five genetically distinct patient-derived brain-tumor initiating cell lines (BTIC) with a unique collection of small molecule epigenetic modulators from the Structural Genomics Consortium (SGC). We identified multiple hits that inhibited the growth of BTICs in vitro, and further evaluated the therapeutic potential of EZH2 and HDAC inhibitors due to the high relevance of these targets for GBM. We found that the novel SAM-competitive EZH2 inhibitor UNC1999 exhibited low micromolar cytotoxicity in vitro on a diverse collection of BTIC lines, synergized with dexamethasone (DEX) and suppressed tumor growth in vivo in combination with DEX. In addition, a unique brain-penetrant class I HDAC inhibitor exhibited cytotoxicity in vitro on a panel of BTIC lines and extended survival in combination with TMZ in an orthotopic BTIC model in vivo. Finally, a combination of EZH2 and HDAC inhibitors demonstrated synergy in vitro by augmenting apoptosis and increasing DNA damage. Our findings identify key epigenetic modulators in GBM that regulate BTIC growth and survival and highlight promising combination therapies.


Assuntos
Antineoplásicos/uso terapêutico , Neoplasias Encefálicas/tratamento farmacológico , Ensaios de Seleção de Medicamentos Antitumorais/métodos , Proteína Potenciadora do Homólogo 2 de Zeste/antagonistas & inibidores , Glioblastoma/tratamento farmacológico , Inibidores de Histona Desacetilases/uso terapêutico , Piridonas/uso terapêutico , Animais , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Dano ao DNA/efeitos dos fármacos , Dexametasona/uso terapêutico , Sinergismo Farmacológico , Quimioterapia Combinada , Epigênese Genética , Inibidores de Histona Desacetilases/farmacologia , Humanos , Camundongos , Camundongos SCID , Terapia de Alvo Molecular , Piridonas/farmacologia , Bibliotecas de Moléculas Pequenas , Ensaios Antitumorais Modelo de Xenoenxerto
12.
Clin Cancer Res ; 22(15): 3860-75, 2016 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-27006494

RESUMO

PURPOSE: Glioblastoma is one of the most lethal cancers in humans, and with existing therapy, survival remains at 14.6 months. Current barriers to successful treatment include their infiltrative behavior, extensive tumor heterogeneity, and the presence of a stem-like population of cells, termed brain tumor-initiating cells (BTIC) that confer resistance to conventional therapies. EXPERIMENTAL DESIGN: To develop therapeutic strategies that target BTICs, we focused on a repurposing approach that explored already-marketed (clinically approved) drugs for therapeutic potential against patient-derived BTICs that encompass the genetic and phenotypic heterogeneity of glioblastoma observed clinically. RESULTS: Using a high-throughput in vitro drug screen, we found that montelukast, clioquinol, and disulfiram (DSF) were cytotoxic against a large panel of patient-derived BTICs. Of these compounds, disulfiram, an off-patent drug previously used to treat alcoholism, in the presence of a copper supplement, showed low nanomolar efficacy in BTICs including those resistant to temozolomide and the highly infiltrative quiescent stem-like population. Low dose DSF-Cu significantly augmented temozolomide activity in vitro, and importantly, prolonged in vivo survival in patient-derived BTIC models established from both newly diagnosed and recurrent tumors. Moreover, we found that in addition to acting as a potent proteasome inhibitor, DSF-Cu functionally impairs DNA repair pathways and enhances the effects of DNA alkylating agents and radiation. These observations suggest that DSF-Cu inhibits proteasome activity and augments the therapeutic effects of DNA-damaging agents (temozolomide and radiation). CONCLUSIONS: DSF-Cu should be considered as an adjuvant therapy for the treatment of patients with glioblastoma in both newly diagnosed and recurrent settings. Clin Cancer Res; 22(15); 3860-75. ©2016 AACR.


Assuntos
Antineoplásicos/farmacologia , Cobre/farmacologia , Dacarbazina/análogos & derivados , Dissulfiram/farmacologia , Glioblastoma/metabolismo , Animais , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Reparo do DNA , Dacarbazina/farmacologia , Modelos Animais de Doenças , Resistencia a Medicamentos Antineoplásicos , Ensaios de Seleção de Medicamentos Antitumorais , Sinergismo Farmacológico , Feminino , Perfilação da Expressão Gênica , Glioblastoma/tratamento farmacológico , Glioblastoma/genética , Glioblastoma/patologia , Ensaios de Triagem em Larga Escala , Humanos , Camundongos , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Temozolomida , Carga Tumoral/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
13.
Neuro Oncol ; 18(8): 1088-1098, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-26962017

RESUMO

BACKGROUND: Myxoma virus (MYXV) is a promising oncolytic agent and is highly effective against immortalized glioma cells but less effective against brain tumor initiating cells (BTICs), which are believed to mediate glioma development/recurrence. MYXV encodes various proteins to attenuate host cell apoptosis, including an antiapoptotic Bcl-2 homologue known as M011L. Such proteins may limit the ability of MYXV to kill BTICs, which have heightened resistance to apoptosis. We hypothesized that infecting BTICs with an M011L-deficient MYXV construct would overcome BTIC resistance to MYXV. METHODS: We used patient-derived BTICs to evaluate the efficacy of M011L knockout virus (vMyx-M011L-KO) versus wild-type MYXV (vMyx-WT) and characterized the mechanism of virus-induced cell death in vitro. To extend our findings in a novel immunocompetent animal model, we derived, cultured, and characterized a C57Bl/6J murine BTIC (mBTIC0309) from a spontaneous murine glioma and evaluated vMyx-M011L-KO efficacy with and without temozolomide (TMZ) in mBTIC0309-bearing mice. RESULTS: We demonstrated that vMyx-M011L-KO induces apoptosis in BTICs, dramatically increasing sensitivity to the virus. vMyx-WT failed to induce apoptosis as M011L protein prevented Bax activation and cytochrome c release. In vivo, intracranial implantation of mBTIC0309 generated tumors that closely recapitulated the pathological and molecular profile of human gliomas. Treatment of tumor-bearing mice with vMyx-M011L-KO significantly prolonged survival in immunocompetent-but not immunodeficient-mouse models, an effect that is significantly enhanced in combination with TMZ. CONCLUSIONS: Our data suggest that vMyx-M011L-KO is an effective, well-tolerated, proapoptotic oncolytic virus and a strong candidate for clinical translation.

14.
Neuro Oncol ; 17(8): 1086-94, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25605818

RESUMO

BACKGROUND: Brain tumor-initiating cells (BTICs) are stem-like cells hypothesized to form a disease reservoir that mediates tumor recurrence in high-grade gliomas. Oncolytic virotherapy uses replication-competent viruses to target and kill malignant cells and has been evaluated in clinic for glioma therapy with limited results. Myxoma virus (MyxV) is a safe and highly effective oncolytic virus (OV) in conventional glioma models but, as seen with other OVs, is only modestly effective for patient-derived BTICs. The objective of this study was to determine whether MyxV treatment against human BTICs could be improved by combining chemotherapeutics and virotherapy. METHODS: A 73-compound library of drug candidates in clinical use or preclinical development was screened to identify compounds that sensitize human BTICs to MyxV treatment in vitro, and synergy was evaluated mathematically in lead compounds using Chou-Talalay analyses. The effects of combination therapy on viral gene expression and viral replication were also assessed. RESULTS: Eleven compounds that enhance MyxV efficacy were identified, and 6 were shown to synergize with the virus using Chou-Talalay analyses. Four of the synergistic compounds were shown to significantly increase viral gene expression, indicating a potential mechanism for synergy. Three highly synergistic compounds (axitinib, a VEGFR inhibitor; rofecoxib, a cyclooxygenase-2 inhibitor; and pemetrexed, a folate anti-metabolite) belong to classes of compounds that have not been previously shown to synergize with oncolytic viruses in vitro. CONCLUSIONS: This study has identified multiple novel drug candidates that synergistically improve MyxV efficacy in a preclinical BTIC glioma model.


Assuntos
Antineoplásicos/uso terapêutico , Neoplasias Encefálicas/terapia , Glioblastoma/terapia , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/virologia , Terapia Viral Oncolítica , Antineoplásicos/administração & dosagem , Axitinibe , Neoplasias Encefálicas/virologia , Linhagem Celular Tumoral , Terapia Combinada , Glioblastoma/virologia , Humanos , Imidazóis/administração & dosagem , Imidazóis/uso terapêutico , Técnicas In Vitro , Indazóis/administração & dosagem , Indazóis/uso terapêutico , Myxoma virus/genética , Myxoma virus/fisiologia , Vírus Oncolíticos/genética , Vírus Oncolíticos/fisiologia , Bibliotecas de Moléculas Pequenas
15.
Neuro Oncol ; 17(6): 822-31, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25395461

RESUMO

BACKGROUND: Neurocutaneous melanocytosis (NCM) is a rare congenital disorder that presents with pigmented cell lesions of the brain or leptomeninges in children with large or multiple congenital melanocytic nevi. Although the exact pathological processes involved are currently unclear, NCM appears to arise from an abnormal development of melanoblasts or melanocyte precursors. Currently, it has an extremely poor prognosis due to rapid disease progression and lack of effective treatment modalities. METHODS: In this study, we report on an experimental approach to examining NCM cells by establishing subcutaneous tumors in nude mice, which can be further expanded for conducting molecular and drug sensitivity experiments. RESULTS: Analysis of the NRAS gene-coding sequences of an established NCM cell line (YP-MEL) and NCM patient cells revealed heterogeneity in NRAS Q61K that activated mutation and possibly consequential differential sensitivity to MEK inhibition. Gene expression studies were performed to compare the molecular profiles of NCM cells with normal skin fibroblasts. In vitro cytotoxicity screens of libraries of targeted small-molecule inhibitors revealed prospective agents for further evaluation. CONCLUSIONS: Our studies provide an experimental platform for the generation of NCM cells for preclinical studies and the production of molecular and in vitro data with which to identify druggable targets for the treatment.


Assuntos
Antineoplásicos/administração & dosagem , Melanose/tratamento farmacológico , Melanose/genética , Síndromes Neurocutâneas/tratamento farmacológico , Síndromes Neurocutâneas/genética , Ensaios Antitumorais Modelo de Xenoenxerto/métodos , Animais , Antineoplásicos/uso terapêutico , Pré-Escolar , GTP Fosfo-Hidrolases/genética , Xenoenxertos/efeitos dos fármacos , Xenoenxertos/patologia , Humanos , Masculino , Melanose/patologia , Proteínas de Membrana/genética , Camundongos , Camundongos Nus , Mutação , Síndromes Neurocutâneas/patologia , Transdução de Sinais/efeitos dos fármacos , Bibliotecas de Moléculas Pequenas/administração & dosagem , Bibliotecas de Moléculas Pequenas/uso terapêutico , Transcriptoma , Células Tumorais Cultivadas
16.
Clin Cancer Res ; 20(22): 5756-67, 2014 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-25316808

RESUMO

PURPOSE: The EGFR and PI3K/mTORC1/2 pathways are frequently altered in glioblastoma (GBM), but pharmacologic targeting of EGFR and PI3K signaling has failed to demonstrate efficacy in clinical trials. Lack of relevant models has rendered it difficult to assess whether targeting these pathways might be effective in molecularly defined subgroups of GBMs. Here, human brain tumor-initiating cell (BTIC) lines with different combinations of endogenous EGFR wild-type, EGFRvIII, and PTEN mutations were used to investigate response to the EGFR inhibitor gefitinib, mTORC1 inhibitor rapamycin, and dual mTORC1/2 inhibitor AZD8055 alone and in combination with temozolomide (TMZ) EXPERIMENTAL DESIGN: In vitro growth inhibition and cell death induced by gefitinib, rapamycin, AZD8055, and TMZ or combinations in human BTICs were assessed by alamarBlue, neurosphere, and Western blotting assays. The in vivo efficacy of AZD8055 was assessed in subcutaneous and intracranial BTIC xenografts. Kaplan-Meier survival studies were performed with AZD8055 and in combination with TMZ. RESULTS: We confirm that gefitinib and rapamycin have modest effects in most BTIC lines, but AZD8055 was highly effective at inhibiting Akt/mTORC2 activity and dramatically reduced the viability of BTICs regardless of their EGFR and PTEN mutational status. Systemic administration of AZD8055 effectively inhibited tumor growth in subcutaneous BTIC xenografts and mTORC1/2 signaling in orthotopic BTIC xenografts. AZD8055 was synergistic with the alkylating agent TMZ and significantly prolonged animal survival. CONCLUSION: These data suggest that dual inhibition of mTORC1/2 may be of benefit in GBM, including the subset of TMZ-resistant GBMs.


Assuntos
Neoplasias Encefálicas/metabolismo , Dacarbazina/análogos & derivados , Glioblastoma/metabolismo , Complexos Multiproteicos/antagonistas & inibidores , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Serina-Treonina Quinases TOR/antagonistas & inibidores , Animais , Antineoplásicos/administração & dosagem , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Apoptose/genética , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/mortalidade , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/genética , Metilação de DNA , Metilases de Modificação do DNA/genética , Metilases de Modificação do DNA/metabolismo , Enzimas Reparadoras do DNA/genética , Enzimas Reparadoras do DNA/metabolismo , Dacarbazina/administração & dosagem , Dacarbazina/farmacologia , Modelos Animais de Doenças , Sinergismo Farmacológico , Receptores ErbB/antagonistas & inibidores , Receptores ErbB/genética , Glioblastoma/tratamento farmacológico , Glioblastoma/genética , Glioblastoma/mortalidade , Glioblastoma/patologia , Humanos , Alvo Mecanístico do Complexo 1 de Rapamicina , Alvo Mecanístico do Complexo 2 de Rapamicina , Camundongos , Mutação , PTEN Fosfo-Hidrolase/genética , Regiões Promotoras Genéticas , Inibidores de Proteínas Quinases/administração & dosagem , Transdução de Sinais/efeitos dos fármacos , Temozolomida , Carga Tumoral/efeitos dos fármacos , Carga Tumoral/genética , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
17.
Cancer Res ; 74(24): 7260-73, 2014 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-25336188

RESUMO

Oncolytic virus therapy is being evaluated in clinical trials for human glioma. While it is widely assumed that the immune response of the patient to the virus infection limits the utility of the therapy, investigations into the specific cell type(s) involved in this response have been performed using nonspecific pharmacologic inhibitors or allogeneic models with compromised immunity. To identify the immune cells that participate in clearing an oncolytic infection in glioma, we used flow cytometry and immunohistochemistry to immunophenotype an orthotopic glioma model in immunocompetent mice after Myxoma virus (MYXV) administration. These studies revealed a large resident microglia and macrophage population in untreated tumors, and robust monocyte, T-, and NK cell infiltration 3 days after MYXV infection. To determine the role on the clinical utility of MYXV therapy for glioma, we used a combination of knockout mouse strains and specific immunocyte ablation techniques. Collectively, our experiments identify an important role for tumor-resident myeloid cells and overlapping roles for recruited NK and T cells in the clearance and efficacy of oncolytic MYXV from gliomas. Using a cyclophosphamide regimen to achieve lymphoablation prior and during MYXV treatment, we prevented treatment-induced peripheral immunocyte recruitment and, surprisingly, largely ablated the tumor-resident macrophage population. Virotherapy of cyclophosphamide-treated animals resulted in sustained viral infection within the glioma as well as a substantial survival advantage. This study demonstrates that resistance to MYXV virotherapy in syngeneic glioma models involves a multifaceted cellular immune response that can be overcome with cyclophosphamide-mediated lymphoablation.


Assuntos
Neoplasias Encefálicas/terapia , Glioma/terapia , Myxoma virus/imunologia , Terapia Viral Oncolítica , Animais , Neoplasias Encefálicas/imunologia , Neoplasias Encefálicas/virologia , Linhagem Celular Tumoral , Ciclofosfamida/administração & dosagem , Citometria de Fluxo , Glioma/imunologia , Glioma/virologia , Humanos , Imunidade Celular/imunologia , Células Matadoras Naturais/imunologia , Camundongos , Vírus Oncolíticos/imunologia , Sirolimo/administração & dosagem , Ensaios Antitumorais Modelo de Xenoenxerto
18.
Clin Cancer Res ; 20(18): 4894-903, 2014 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-25078279

RESUMO

PURPOSE: The current standard of care for glioblastoma (GBM) involves a combination of surgery, radiotherapy, and temozolomide chemotherapy, but this regimen fails to achieve long-term tumor control. Resistance to temozolomide is largely mediated by expression of the DNA repair enzyme MGMT; however, emerging evidence suggests that inactivation of MSH6 and other mismatch repair proteins plays an important role in temozolomide resistance. Here, we investigate endogenous MSH6 mutations in GBM, anaplastic oligodendroglial tumor tissue, and corresponding brain tumor-initiating cell lines (BTIC). EXPERIMENTAL DESIGN: MSH6 sequence and MGMT promoter methylation were determined in human tumor samples and BTICs. Sensitivity to temozolomide was evaluated in vitro using BTICs in the absence and presence of O(6)-benzylguanine to deplete MGMT. The influence of MGMT and MSH6 status on in vivo sensitivity to temozolomide was evaluated using intracranial BTIC xenografts. RESULTS: We identified 11 previously unreported mutations in MSH6 in nine different glioma samples and six paired BTIC lines from adult patients. In addition, MSH6 mutations were documented in three oligodendrogliomas and two treatment-naïve gliomas, both previously unreported findings. These mutations were found to influence the sensitivity of BTICs to temozolomide both in vitro and in vivo, independent of MGMT promoter methylation status. CONCLUSIONS: These data demonstrate that endogenous MSH6 mutations may be present before alkylator therapy and occur in at least two histologic subtypes of adult glial neoplasms, with this report serving as the first to note these mutations in oligodendroglioma. These findings broaden our understanding of the clinical response to temozolomide in gliomas.


Assuntos
Neoplasias Encefálicas/genética , Metilação de DNA , Proteínas de Ligação a DNA/genética , Resistencia a Medicamentos Antineoplásicos/genética , Glioblastoma/genética , Oligodendroglioma/genética , Regiões Promotoras Genéticas , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Antineoplásicos Alquilantes/uso terapêutico , Western Blotting , Neoplasias Encefálicas/tratamento farmacológico , Metilação de DNA/genética , Metilases de Modificação do DNA/genética , Enzimas Reparadoras do DNA/genética , Dacarbazina/análogos & derivados , Dacarbazina/uso terapêutico , Feminino , Genótipo , Glioblastoma/tratamento farmacológico , Humanos , Masculino , Camundongos , Pessoa de Meia-Idade , Mutação , Oligodendroglioma/tratamento farmacológico , Regiões Promotoras Genéticas/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Temozolomida , Proteínas Supressoras de Tumor/genética , Ensaios Antitumorais Modelo de Xenoenxerto , Adulto Jovem
19.
Mol Cancer ; 13: 82, 2014 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-24725816

RESUMO

BACKGROUND: Gallbladder carcinoma (GBC) is highly lethal, and effective treatment will require synergistic anti-tumor management. The study is aimed at investigating the oncolytic value of myxoma virus (MYXV) infection against GBC and optimizing MYXV oncolytic efficiency. METHODS: We examined the permissiveness of GBC cell lines to MYXV infection and compared the effects of MYXV on cell viability among GBC and control permissive glioma cells in vitro and in vivo after MYXV + rapamycin (Rap) treatment, which is known to enhance cell permissiveness to MYXV by upregulating p-Akt levels. We also assessed MYXV + hyaluronan (HA) therapy efficiency by examinating Akt activation status, MMP-9 expression, cell viability, and collagen distribution. We further compared hydraulic conductivity, tumor area, and survival of tumor-bearing mice between the MYXV + Rap and MYXV + HA therapeutic regimens. RESULTS: MYXV + Rap treatment could considerably increase the oncolytic ability of MYXV against GBC cell lines in vitro but not against GBC xenografts in vivo. We found higher levels of collagen IV in GBC tumors than in glioma tumors. Diffusion analysis demonstrated that collagen IV could physically hinder MYXV intratumoral distribution. HA-CD44 interplay was found to activate the Akt signaling pathway, which increases oncolytic rates. HA was also found to enhance the MMP-9 secretion, which contributes to collagen IV degradation. CONCLUSIONS: Unlike MYXV + Rap, MYXV + HA therapy significantly enhanced the anti-tumor effects of MYXV in vivo and prolonged survival of GBC tumor-bearing mice. HA may optimize the oncolytic effects of MYXV on GBC via the HA-CD44 interaction which can promote viral infection and diffusion.


Assuntos
Neoplasias da Vesícula Biliar/genética , Neoplasias da Vesícula Biliar/terapia , Terapia Viral Oncolítica , Animais , Linhagem Celular Tumoral , Neoplasias da Vesícula Biliar/patologia , Neoplasias da Vesícula Biliar/virologia , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Ácido Hialurônico/administração & dosagem , Técnicas In Vitro , Camundongos , Myxoma virus/genética , Sirolimo/administração & dosagem , Ensaios Antitumorais Modelo de Xenoenxerto
20.
Nat Neurosci ; 17(1): 46-55, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24316889

RESUMO

Brain tumor initiating cells (BTICs) contribute to the genesis and recurrence of gliomas. We examined whether the microglia and macrophages that are abundant in gliomas alter BTIC growth. We found that microglia derived from non-glioma human subjects markedly mitigated the sphere-forming capacity of glioma patient-derived BTICs in culture by inducing the expression of genes that control cell cycle arrest and differentiation. This sphere-reducing effect was mimicked by macrophages, but not by neurons or astrocytes. Using a drug screen, we validated amphotericin B (AmpB) as an activator of monocytoid cells and found that AmpB enhanced the microglial reduction of BTIC spheres. In mice harboring intracranial mouse or patient-derived BTICs, daily systemic treatment with non-toxic doses of AmpB substantially prolonged life. Notably, microglia and monocytes cultured from glioma patients were inefficient at reducing the sphere-forming capacity of autologous BTICs, but this was rectified by AmpB. These results provide new insights into the treatment of gliomas.


Assuntos
Anfotericina B/farmacologia , Antineoplásicos/farmacologia , Neoplasias Encefálicas/patologia , Glioma/patologia , Macrófagos/fisiologia , Microglia/fisiologia , Células Tumorais Cultivadas/efeitos dos fármacos , Antígeno AC133 , Análise de Variância , Animais , Anexina A5/metabolismo , Antígenos CD/metabolismo , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/mortalidade , Bromodesoxiuridina/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , Ciclo Celular/efeitos dos fármacos , Ciclo Celular/genética , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/genética , Quimiocina CCL2/farmacologia , Técnicas de Cocultura , Meios de Cultivo Condicionados/farmacologia , Relação Dose-Resposta a Droga , Avaliação Pré-Clínica de Medicamentos , Citometria de Fluxo , Perfilação da Expressão Gênica , Glioma/tratamento farmacológico , Glioma/mortalidade , Glicoproteínas/metabolismo , Humanos , Interleucina-1/farmacologia , Estimativa de Kaplan-Meier , Macrófagos/efeitos dos fármacos , Imageamento por Ressonância Magnética , Camundongos , Proteínas dos Microfilamentos/metabolismo , Microglia/efeitos dos fármacos , Transplante de Neoplasias , Proteínas do Tecido Nervoso/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , Peptídeos/metabolismo , RNA Mensageiro/metabolismo , RNA Interferente Pequeno/farmacologia , Receptores CCR2/genética , Fatores de Tempo , Transfecção , Fator de Necrose Tumoral alfa/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...