Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Nat Commun ; 10(1): 5021, 2019 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-31685819

RESUMO

The world's first superconducting megahertz repetition rate hard X-ray free-electron laser (XFEL), the European XFEL, began operation in 2017, featuring a unique pulse train structure with 886 ns between pulses. With its rapid pulse rate, the European XFEL may alleviate some of the increasing demand for XFEL beamtime, particularly for membrane protein serial femtosecond crystallography (SFX), leveraging orders-of-magnitude faster data collection. Here, we report the first membrane protein megahertz SFX experiment, where we determined a 2.9 Å-resolution SFX structure of the large membrane protein complex, Photosystem I, a > 1 MDa complex containing 36 protein subunits and 381 cofactors. We address challenges to megahertz SFX for membrane protein complexes, including growth of large quantities of crystals and the large molecular and unit cell size that influence data collection and analysis. The results imply that megahertz crystallography could have an important impact on structure determination of large protein complexes with XFELs.


Assuntos
Elétrons , Lasers , Proteínas de Membrana/química , Cristalografia , Cianobactérias/metabolismo , Modelos Moleculares , Complexo de Proteína do Fotossistema I/química , Complexo de Proteína do Fotossistema I/isolamento & purificação , Eletricidade Estática , Síncrotrons , Thermosynechococcus , Raios X
3.
J Biol Chem ; 286(4): 3047-56, 2011 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-21098488

RESUMO

Complex II superfamily members catalyze the kinetically difficult interconversion of succinate and fumarate. Due to the relative simplicity of complex II substrates and their similarity to other biologically abundant small molecules, substrate specificity presents a challenge in this system. In order to identify determinants for on-pathway catalysis, off-pathway catalysis, and enzyme inhibition, crystal structures of Escherichia coli menaquinol:fumarate reductase (QFR), a complex II superfamily member, were determined bound to the substrate, fumarate, and the inhibitors oxaloacetate, glutarate, and 3-nitropropionate. Optical difference spectroscopy and computational modeling support a model where QFR twists the dicarboxylate, activating it for catalysis. Orientation of the C2-C3 double bond of activated fumarate parallel to the C(4a)-N5 bond of FAD allows orbital overlap between the substrate and the cofactor, priming the substrate for nucleophilic attack. Off-pathway catalysis, such as the conversion of malate to oxaloacetate or the activation of the toxin 3-nitropropionate may occur when inhibitors bind with a similarly activated bond in the same position. Conversely, inhibitors that do not orient an activatable bond in this manner, such as glutarate and citrate, are excluded from catalysis and act as inhibitors of substrate binding. These results support a model where electronic interactions via geometric constraint and orbital steering underlie catalysis by QFR.


Assuntos
Proteínas de Escherichia coli/química , Escherichia coli/enzimologia , Modelos Químicos , Modelos Moleculares , Oxirredutases/química , Catálise , Complexo II de Transporte de Elétrons/química , Complexo II de Transporte de Elétrons/metabolismo , Inibidores Enzimáticos/química , Inibidores Enzimáticos/metabolismo , Proteínas de Escherichia coli/metabolismo , Fumaratos/química , Fumaratos/metabolismo , Oxirredutases/metabolismo , Especificidade por Substrato/fisiologia
4.
J Biol Chem ; 286(8): 6733-41, 2011 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-21173145

RESUMO

ATP binding enhances the activity of ClC-5, the transporter mutated in Dent disease, a disease affecting the renal proximal tubule. Previously, the ATP binding site was revealed in x-ray crystal structures of the cytoplasmic region of this membrane protein. Disruption of this site by mutagenesis (Y617A-ClC-5) reduced the functional expression and ATP-dependent regulation of the full-length transporter in Xenopus oocytes. However, insight into the conformational changes underlying ATP-dependent regulation is lacking. Here, we show that ATP binding induces a change in protein conformation. Specifically, small angle x-ray scattering experiments indicate that ATP binding promotes a clamp-like closure of the isolated ClC-5 carboxyl-terminal region. Limited proteolysis studies show that ATP binding induces conformational compaction of the carboxyl-terminal region in the intact membrane protein as well. In the context of fibroblasts and proximal tubule epithelial cells, disruption of the ATP binding site in full-length ClC-5 (Y617A-ClC-5) led to a defect in processing and trafficking out of the endoplasmic reticulum. These latter findings account for the decrease in functional expression previously reported for this ATP-binding mutant and prompt future study of a model whereby conformational compaction caused by ATP binding promotes biosynthetic maturation.


Assuntos
Trifosfato de Adenosina/química , Proteínas Repressoras/química , Trifosfato de Adenosina/genética , Trifosfato de Adenosina/metabolismo , Substituição de Aminoácidos , Animais , Sítios de Ligação , Células CHO , Cricetinae , Cricetulus , Doença de Dent/genética , Doença de Dent/metabolismo , Retículo Endoplasmático/química , Retículo Endoplasmático/genética , Retículo Endoplasmático/metabolismo , Humanos , Mutagênese , Mutação de Sentido Incorreto , Oócitos , Mapeamento de Peptídeos , Estrutura Terciária de Proteína , Transporte Proteico/genética , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Xenopus laevis
5.
J Mol Biol ; 358(2): 571-9, 2006 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-16524591

RESUMO

Colicin E5 is a tRNA-specific ribonuclease that recognizes and cleaves four tRNAs in Escherichia coli that contain the hypermodified nucleoside queuosine (Q) at the wobble position. Cells that produce colicin E5 also synthesize the cognate immunity protein (Im5) that rapidly and tightly associates with colicin E5 to prevent it from cleaving its own tRNAs to avoid suicide. We report here the crystal structure of Im5 in a complex with the activity domain of colicin E5 (E5-CRD) at 1.15A resolution. The structure reveals an extruded domain from Im5 that docks into the recessed RNA binding cleft in E5-CRD, resulting in extensive interactions between the two proteins. The interactions are primarily hydrophilic, with an interface that contains complementary surface charges between the two proteins. Detailed interactions in three separate regions of the interface account for specific recognition of colicin E5 by Im5. Furthermore, single-site mutational studies of Im5 confirmed the important role of particular residues in recognition and binding of colicin E5. Structural comparison of the complex reported here with E5-CRD alone, as well as with a docking model of RNA-E5-CRD, indicates that Im5 achieves its inhibition by physically blocking the cleft in colicin E5 that engages the RNA substrate.


Assuntos
Proteínas de Bactérias/química , Colicinas/química , Proteínas de Escherichia coli/química , Ribonucleases/antagonistas & inibidores , Sítios de Ligação , Colicinas/genética , Cristalografia por Raios X , Escherichia coli/efeitos dos fármacos , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Modelos Moleculares , Mutação , Conformação Proteica , RNA Bacteriano , RNA de Transferência
6.
Acta Crystallogr D Biol Crystallogr ; 59(Pt 3): 600-2, 2003 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-12595738

RESUMO

The membrane-bound respiratory complex II, succinate:ubiquinone oxidoreductase (SQR) from Escherichia coli, has been anaerobically expressed, then purified and crystallized. The initial crystals obtained were small and diffracted poorly. In order to facilitate structure determination, rational screening and sample-quality analysis using electron microscopy was implemented. The crystals of SQR from E. coli belong to the trigonal space group R32, with unit-cell parameters a = b = 138.7, c = 521.9 A, and diffract to 2.6 A resolution. The optimization strategy used for obtaining well diffracting SQR crystals is applicable to a wide range of membrane proteins.


Assuntos
Escherichia coli/enzimologia , Complexos Multienzimáticos/química , Oxirredutases/química , Succinato Desidrogenase/química , Anisotropia , Corantes , Cristalização , Cristalografia por Raios X , Complexo II de Transporte de Elétrons , Microscopia Eletrônica , Complexos Multienzimáticos/isolamento & purificação , Oxirredutases/isolamento & purificação , Succinato Desidrogenase/isolamento & purificação , Ultracentrifugação
7.
Science ; 299(5607): 700-4, 2003 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-12560550

RESUMO

The structure of Escherichia coli succinate dehydrogenase (SQR), analogous to the mitochondrial respiratory complex II, has been determined, revealing the electron transport pathway from the electron donor, succinate, to the terminal electron acceptor, ubiquinone. It was found that the SQR redox centers are arranged in a manner that aids the prevention of reactive oxygen species (ROS) formation at the flavin adenine dinucleotide. This is likely to be the main reason SQR is expressed during aerobic respiration rather than the related enzyme fumarate reductase, which produces high levels of ROS. Furthermore, symptoms of genetic disorders associated with mitochondrial SQR mutations may be a result of ROS formation resulting from impaired electron transport in the enzyme.


Assuntos
Escherichia coli/enzimologia , Complexos Multienzimáticos/química , Complexos Multienzimáticos/metabolismo , Oxirredutases/química , Oxirredutases/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Succinato Desidrogenase/química , Succinato Desidrogenase/metabolismo , Aerobiose , Anaerobiose , Sítios de Ligação , Cristalografia por Raios X , Dinitrofenóis/química , Dinitrofenóis/farmacologia , Transporte de Elétrons , Complexo II de Transporte de Elétrons , Flavina-Adenina Dinucleotídeo/metabolismo , Heme/química , Modelos Moleculares , Complexos Multienzimáticos/antagonistas & inibidores , Complexos Multienzimáticos/genética , Mutação , Oxirredução , Oxirredutases/antagonistas & inibidores , Oxirredutases/genética , Conformação Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Subunidades Proteicas/química , Succinato Desidrogenase/antagonistas & inibidores , Succinato Desidrogenase/genética , Ácido Succínico/metabolismo , Superóxidos/metabolismo , Ubiquinona/química , Ubiquinona/metabolismo
8.
J Biol Chem ; 277(18): 16124-30, 2002 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-11850430

RESUMO

The quinol-fumarate reductase (QFR) respiratory complex of Escherichia coli is a four-subunit integral-membrane complex that catalyzes the final step of anaerobic respiration when fumarate is the terminal electron acceptor. The membrane-soluble redox-active molecule menaquinol (MQH(2)) transfers electrons to QFR by binding directly to the membrane-spanning region. The crystal structure of QFR contains two quinone species, presumably MQH(2), bound to the transmembrane-spanning region. The binding sites for the two quinone molecules are termed Q(P) and Q(D), indicating their positions proximal (Q(P)) or distal (Q(D)) to the site of fumarate reduction in the hydrophilic flavoprotein and iron-sulfur protein subunits. It has not been established whether both of these sites are mechanistically significant. Co-crystallization studies of the E. coli QFR with the known quinol-binding site inhibitors 2-heptyl-4-hydroxyquinoline-N-oxide and 2-[1-(p-chlorophenyl)ethyl] 4,6-dinitrophenol establish that both inhibitors block the binding of MQH(2) at the Q(P) site. In the structures with the inhibitor bound at Q(P), no density is observed at Q(D), which suggests that the occupancy of this site can vary and argues against a structurally obligatory role for quinol binding to Q(D). A comparison of the Q(P) site of the E. coli enzyme with quinone-binding sites in other respiratory enzymes shows that an acidic residue is structurally conserved. This acidic residue, Glu-C29, in the E. coli enzyme may act as a proton shuttle from the quinol during enzyme turnover.


Assuntos
Escherichia coli/enzimologia , Hidroquinonas/metabolismo , Oxirredutases/química , Sequência de Aminoácidos , Sítios de Ligação , Cristalografia por Raios X , Modelos Moleculares , Oxirredutases/antagonistas & inibidores , Ligação Proteica , Conformação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...